Price Discrimination in Input Markets

Tommaso Valletti

Imperial College London, University or Rome and CEPR

joint with

Roman Inderst University of Frankfurt, Imperial College London and CEPR

Motivation

- Imposing non-discriminatory terms of supply is a frequent policy response in regulated industries (e.g., Telecoms).
- But also in unregulated industries, antitrust provisions can restrict discriminatory pricing (Robinson-Patman, Article 82(c)).
- In addition, in Europe geographic price discrimination may contradict single market doctrine.

Motivation (cont.)

- Large literature on price discrimination. Our focus: PD in input (intermediary) markets.
- Key contributions: Katz 1987, DeGraba 1990, Yoshida 2000.
- Approach in existing papers: Monopolistic supplier chooses linear input price(s) to maximize profits.
- Our departure: Scope for demand-side substitution, albeit at costs and to potentially inferior supplier.
- Supplier can still be dominant, but no longer unconstrained monopolist.

The Model

- Single supplier, two downstream firms i = 1, 2.
- Supplier has zero production costs, firm i has own costs k_i.
- **Case I** without competition:
 - Each firm is monopolist in symmetric market
- **Case II** with competition:
 - Firms compete in quantities in same market
 - Inverse demand P(q₁+q₂)

The Model (cont.)

- Alternative supply option:
 - At costs F > 0 get access to alternative source of supply with constant marginal costs w[^].
 - Thus, with input price w_i can sell at

 $c_i = k_i + w_i$

And under alternative (outside) option can sell at

$$\widehat{c}_i = k_i + \widehat{w}$$

The Model (cont.)

• The alternative supply option gives rise for each i = 1, 2 to the respective participation constraint:

$$\begin{aligned} \pi(c_i) &= \max_q q \left[P(q) - c_i \right] \\ &\geq V_i^A = \pi(\widehat{c}_i) - F \end{aligned}$$

• **Assumption:** The "unconstrained" input prices would be too high as the outside option is sufficiently attractive for both firms.

I - Analysis with Separate Markets

- Benchmark (unconstrained supplier)
 - More efficient firm is charged higher price. This implies a "volume premium".
- The imposition of uniform pricing
 - benefits the more efficient (larger) firm and hurts the less efficient (smaller) firm;
 - may lead to the exclusion of the less efficient (smaller) firm.

- **Our model** (supplier constrained by demandside substitution)
 - Under PD, input prices set s.t. participation constraints bind.
 - More efficient (larger) firm receives discount.
- The imposition of uniform pricing now
 - allows the less efficient firm to obtain the same lower price as the more efficient firm under PD;
 - unambiguously increases consumer surplus and welfare (in the short run) if both firms are still supplied;
 - may make it unprofitable to supply the more efficient (larger) firm, which switches to its alternative option.

Analysis with Separate Markets: Long Run

 In t = 1, both downstream firms can invest in a reduction of their own marginal costs.

• Benchmark

- Investment benefits are "taxed" via a higher input price. Less so under uniform pricing.
- DeGraba (1990): With linear demand and quadratic investment costs, UP increases consumer surplus and welfare in the long run.

- Our model
- Under PD incentives are given by

$$-\frac{d\pi(c_i)}{dk_i} = -\pi'(c_i)\left(1 + \frac{dw_i}{dk_i}\right)$$

- Under UP, *ex-post* more efficient firm has same incentives. Incentives lower for *expost* less efficient firm.
 - If firms have initially symmetric costs, one firm chooses the same investment, the other firm strictly less.
 - Consumer surplus lower in the long run (and with linear demand also welfare).

II - Downstream Competition: Short Run

• Benchmark

- Still, more efficient firm with larger market share must pay higher input price.
- With linear demand, no "interaction": If k₁ down, only w₁ up but w₂ unchanged.
- UP leads to "average" price, hurting the less efficient firm.
- More efficient firm's market share *smaller* under PD.

• Our model

- Under PD, the more efficient (and larger) firm obtains again a lower input price.
- PD amplifies market share differences.
- If firm i becomes more efficient, the shift in market share is amplified both by a reduction in w_i and by an increase in w_j ("waterbed effect").
- UP reduces input price for less efficient firm, but increases input price for more efficient firm.
 - Intuition: As w_i decreases, participation constraint for firm i becomes again slack.
 - Implication: Shifts market share to the less efficient firm j, both as w_j decreases and as w_i increases.

Downstream Competition: Short Run (cont.)

For linear demand (and small F) uniform price is smaller than "average" PD price
→ Implies increase in total output and thus consumer surplus.

Example for $k_1 \le k_2 = 0.15$ (W = average PD price, w = uniform price)

Imperial College London

Roman Inderst and Tommaso Valletti

Downstream Competition: Long Run

- PD vs. uniform pricing: Incentives for the ex-post more efficient firm are now *strictly* higher under PD as
 - reduction in c_i increases w_i under PD,
 - while it lowers joint price w.
- Incentives for ex-post less efficient firm are additionally reduced as lower c_i increases uniform price w.
- If firms initially symmetric, *ex-post* less efficient firm invests less.
- Linear demand and quadratic investment costs: For all examples we studied, uniform pricing raises long-run marginal costs for *both* firms.

Conclusion

- Non-discriminatory pricing rules often advocated by small firms.
 - Standard (unconstrained) case generates opposite.
 - Our analysis:
 - \rightarrow Uniform pricing indeed benefits smaller firms.
 - \rightarrow Under competition, also eliminates "waterbed" effect.
 - \rightarrow PD amplifies, not dampens, differences in market share.
- Long-run analysis: Uniform pricing may stifle investment incentives.
- Under uniform pricing firms always ex-post different:
 - Ex-post less efficient firm sits on rival's shoulders.
 - Instead of "leveling the playing field", uniform pricing may create differences endogenously.

Buyer power and the waterbed effect

Tommaso Valletti

Imperial College London, University or Rome and CEPR

joint with

Roman Inderst University of Frankfurt, Imperial College and CEPR

Motivation

- "Waterbed Effect": If (non cost-related) price reductions to one set of buyers lead to higher prices for other buyers.
- Logically consistent or accounting illusion?
- If logically consistent, then:
 - When strong, when weak?
 - Consumer harm?

The Basic Model

- Markets and firms:
 - n = 1, ..., N symmetric markets. Each with two firms, A_n and B_n .
 - For now symmetric own marginal costs c.
 - Linear wholesale pricing of supplier: w(A_n), w(B_n).
 - Supplier's own marginal costs k.
- Game: Supplier makes TOL offer.
- Outside option for buyers:
 - Switch at fixed costs F. Procure elsewhere with costs k + c.

The model (cont.)

- Price competition. Strategic complements.
- Standard assumptions on derived profit function π:
 - π₁ < 0, π₁₁ > 0.
 - π₁₂ < 0.
- Working example: Hotelling competition.

Illustration (Hotelling)

Analysis with symmetric firms

- Participation constraints:
 - 1. $π(c+w(A_n), c+w(B_n)) ≥ π(c+k, c+w(B_n)) F$
 - 2. $\pi(c+w(B_n), c+w(A_n)) \ge \pi(c+k, c+w(A_n)) F$
- Symmetric wholesale price for independent firms (w_I) up in F.
- Hotelling:

$$w(A_n) = w(B_n) = w_I = k + 3t \sqrt{1 + 2F/t} - 1$$

Introducing Multiples

- One large buyer controls $n_L \ge 2$ firms.
- Three different equilibrium wholesale prices:
 - Large buyer w_L.
 - Competing small firms w_s.
 - Other independent firms w₁.
- The waterbed effect:
 - $w_L < w_I$ and $w_S > w_I$. However, different intuition!
 - Difference $w_s w_L > 0$ is strictly increasing in F.

Retail Prices and Consumer Surplus

- Retail price of small firms affected by:
 - Waterbed effect: Up.
 - Increased competition (strategic complements): Down.
- Formally: $\frac{dp_s}{dw_L} = \frac{\partial p_s}{\partial w_L} + \frac{\partial p_s}{\partial w_S} \frac{\partial w_s}{\partial w_L}.$
- **Result:** If the large buyer's discount is relatively small, i.e., if F is small, then all retail prices go down.
 - First, "strategic complement" effect independent of F.
 - Second, waterbed effect goes to zero for low F.

Results for the Hotelling Model

• Result 1: The waterbed effect dominates if

$$y_S < \frac{1}{3t}(w_S - k)$$

- Here:
 - y_s is the market share of a small firm.
 - This is thus more likely to hold if F is large, i.e., if the price differential is already large.

Results (cont.)

- Consumer surplus: Marginal change w.r.t. discount w_L equal to marginal change in average price.
- **Result:** Consumer surplus down if large buyer gets additional discount (implied by further growth) whenever

$$2y_{s} \frac{2 - y_{s}}{1 + y_{s}} < \frac{1}{3t}(y_{s} - k)$$

• While stricter than previous condition, again more likely if small buyers already more "squeezed".

Extensions

- "Organic Growth"
 - The waterbed effect arises as well if:
 - \rightarrow Each buyer only controls one firm.
 - \rightarrow But size differences are due to different own marginal costs.
 - \rightarrow Growth = Increase in efficiency.
 - Only difference: Welfare analysis.
- Endogenous acquisition (Hotelling)
 - Larger buyers have a higher willingness to acquire additional firms.
 - \rightarrow Can lever larger discount into new market.
 - →Further input price differential dampens competition. (In contrast, to case where firms become more symmetric.)

Summary

- Results:
 - Formal foundation for the waterbed, even with constant upstream market structure.
 - Potential for consumer harm, even without downstream exit.
 - Waterbed effect stronger and consumer harm more likely if smaller firms are already substantially disadvantaged.
- Caveats and next steps:
 - Reconsider "full" bargaining case.
 - Alternative models/sources of buyer power.

Merci!

copies available at: www.imperial.ac.uk/people/t.valletti