## Price Discrimination in Input Markets

Tommaso Valletti<br>Imperial College London, University or Rome and CEPR

joint with
Roman Inderst
University of Frankfurt, Imperial College London and CEPR

## Motivation

- Imposing non-discriminatory terms of supply is a frequent policy response in regulated industries (e.g., Telecoms).
- But also in unregulated industries, antitrust provisions can restrict discriminatory pricing (Robinson-Patman, Article 82(c)).
- In addition, in Europe geographic price discrimination may contradict single market doctrine.


## Motivation (cont.)

- Large literature on price discrimination. Our focus: PD in input (intermediary) markets.
- Key contributions: Katz 1987, DeGraba 1990, Yoshida 2000.
- Approach in existing papers: Monopolistic supplier chooses linear input price(s) to maximize profits.
- Our departure: Scope for demand-side substitution, albeit at costs and to potentially inferior supplier.
- Supplier can still be dominant, but no longer unconstrained monopolist.


## The Model

- Single supplier, two downstream firms $\mathrm{i}=1,2$.
- Supplier has zero production costs, firm i has own costs $\mathrm{k}_{\mathrm{i}}$.
- Case I without competition:
- Each firm is monopolist in symmetric market
- Case II with competition:
- Firms compete in quantities in same market
- Inverse demand $P\left(q_{1}+q_{2}\right)$


## The Model (cont.)

- Alternative supply option:
- At costs F > 0 get access to alternative source of supply with constant marginal costs $\mathrm{w}^{\wedge}$.
- Thus, with input price $w_{i}$ can sell at

$$
c_{i}=k_{i}+w_{i}
$$

- And under alternative (outside) option can sell at

$$
\widehat{c_{i}}=k_{i}+\widehat{w}
$$

## The Model (cont.)

- The alternative supply option gives rise for each $i=1$, 2 to the respective participation constraint:

$$
\begin{aligned}
\pi\left(c_{i}\right) & =\max _{q} q\left[P(q)-c_{i}\right] \\
& \geq V_{i}^{A}=\pi\left(\widehat{c}_{i}\right)-F
\end{aligned}
$$

- Assumption: The "unconstrained" input prices would be too high as the outside option is sufficiently attractive for both firms.


## I - Analysis with Separate Markets

- Benchmark (unconstrained supplier)
- More efficient firm is charged higher price. This implies a "volume premium".
- The imposition of uniform pricing
- benefits the more efficient (larger) firm and hurts the less efficient (smaller) firm;
- may lead to the exclusion of the less efficient (smaller) firm.
- Our model (supplier constrained by demandside substitution)
- Under PD, input prices set s.t. participation constraints bind.
- More efficient (larger) firm receives discount.
- The imposition of uniform pricing now
- allows the less efficient firm to obtain the same lower price as the more efficient firm under PD;
- unambiguously increases consumer surplus and welfare (in the short run) if both firms are still supplied;
- may make it unprofitable to supply the more efficient (larger) firm, which switches to its alternative option.


## Analysis with Separate Markets: Long Run

- $\ln t=1$, both downstream firms can invest in a reduction of their own marginal costs.
- Benchmark
- Investment benefits are "taxed" via a higher input price. Less so under uniform pricing.
- DeGraba (1990): With linear demand and quadratic investment costs, UP increases consumer surplus and welfare in the long run.
- Our model
- Under PD incentives are given by

$$
-\frac{d \pi\left(c_{i}\right)}{d k_{i}}=-\pi^{\prime}\left(c_{i}\right)\left(1+\frac{d w_{i}}{d k_{i}}\right)
$$

- Under UP, ex-post more efficient firm has same incentives. Incentives lower for expost less efficient firm.
- If firms have initially symmetric costs, one firm chooses the same investment, the other firm strictly less.
- Consumer surplus lower in the long run (and with linear demand also welfare).


## II - Downstream Competition: Short Run

- Benchmark
- Still, more efficient firm with larger market share must pay higher input price.
- With linear demand, no "interaction": If $\mathrm{k}_{1}$ down, only $w_{1}$ up but $w_{2}$ unchanged.
- UP leads to "average" price, hurting the less efficient firm.
- More efficient firm's market share smaller under PD.
- Our model
- Under PD, the more efficient (and larger) firm obtains again a lower input price.
- PD amplifies market share differences.
- If firm i becomes more efficient, the shift in market share is amplified both by a reduction in $w_{i}$ and by an increase in $w_{j}$ ("waterbed effect").
- UP reduces input price for less efficient firm, but increases input price for more efficient firm.
- Intuition: As w w $_{j}$ decreases, participation constraint for firm i becomes again slack.
- Implication: Shifts market share to the less efficient firm j , both as $\mathrm{w}_{\mathrm{j}}$ decreases and as $w_{i}$ increases.


## Downstream Competition: Short Run (cont.)

For linear demand (and small F) uniform price is smaller than "average" PD price
$\rightarrow$ Implies increase in total output and thus consumer surplus.
Example for $\mathrm{k}_{1} \leq \mathrm{k}_{2}=0.15$ ( $\mathrm{W}=$ average PD price, $\mathrm{w}=$ uniform price )


## Downstream Competition: Long Run

- PD vs. uniform pricing: Incentives for the ex-post more efficient firm are now strictly higher under PD as
- reduction in $c_{i}$ increases $w_{j}$ under PD,
- while it lowers joint price w.
- Incentives for ex-post less efficient firm are additionally reduced as lower $\mathrm{c}_{\mathrm{j}}$ increases uniform price w .
- If firms initially symmetric, ex-post less efficient firm invests less.
- Linear demand and quadratic investment costs: For all examples we studied, uniform pricing raises long-run marginal costs for both firms.


## Conclusion

- Non-discriminatory pricing rules often advocated by small firms.
- Standard (unconstrained) case generates opposite.
- Our analysis:
$\rightarrow$ Uniform pricing indeed benefits smaller firms.
$\rightarrow$ Under competition, also eliminates "waterbed" effect.
$\rightarrow$ PD amplifies, not dampens, differences in market share.
- Long-run analysis: Uniform pricing may stifle investment incentives.
- Under uniform pricing firms always ex-post different:
- Ex-post less efficient firm sits on rival's shoulders.
- Instead of "leveling the playing field", uniform pricing may create differences endogenously.


## Buyer power and the waterbed effect

Tommaso Valletti
Imperial College London, University or Rome and CEPR

joint with

## Roman Inderst

University of Frankfurt, Imperial College and CEPR

## Motivation

- "Waterbed Effect": If (non cost-related) price reductions to one set of buyers lead to higher prices for other buyers.
- Logically consistent or accounting illusion?
- If logically consistent, then:
- When strong, when weak?
- Consumer harm?


## The Basic Model

- Markets and firms:
- $\mathrm{n}=1, \ldots, \mathrm{~N}$ symmetric markets. Each with two firms, $\mathrm{A}_{\mathrm{n}}$ and $\mathrm{B}_{\mathrm{n}}$.
- For now symmetric own marginal costs c.
- Linear wholesale pricing of supplier: $w\left(A_{n}\right), w\left(B_{n}\right)$.
- Supplier's own marginal costs k.
- Game: Supplier makes TOL offer.
- Outside option for buyers:
- Switch at fixed costs F. Procure elsewhere with costs $\mathrm{k}+\mathrm{c}$.


## The model (cont.)

- Price competition. Strategic complements.
- Standard assumptions on derived profit function $\pi$ :
- $\pi_{1}<0, \pi_{11}>0$.
- $\pi_{12}<0$.
- Working example: Hotelling competition.


## Illustration (Hotelling)



## Analysis with symmetric firms

- Participation constraints:

1. $\quad \pi\left(c+w\left(A_{n}\right), c+w\left(B_{n}\right)\right) \geq \pi\left(c+k, c+w\left(B_{n}\right)\right)-F$
2. $m\left(c+w\left(B_{n}\right), c+w\left(A_{n}\right)\right) \geq \pi\left(c+k, c+w\left(A_{n}\right)\right)-F$

- Symmetric wholesale price for independent firms $\left(w_{1}\right)$ up in $F$.
- Hotelling:

$$
w\left(A_{n}\right)=w\left(B_{n}\right)=w_{I}=k+3 t \sqrt{1+2 F / t}-1
$$

## Introducing Multiples

- One large buyer controls $n_{L} \geq 2$ firms.
- Three different equilibrium wholesale prices:
- Large buyer $\mathrm{w}_{\mathrm{L}}$.
- Competing small firms $\mathrm{w}_{\mathrm{s}}$.
- Other independent firms $\mathrm{w}_{1}$.
- The waterbed effect:
- $\mathrm{w}_{\mathrm{L}}<\mathrm{w}_{\mathrm{l}}$ and $\mathrm{w}_{\mathrm{S}}>\mathrm{w}_{\mathrm{l}}$. However, different intuition!
- Difference $w_{S}-w_{L}>0$ is strictly increasing in $F$.


## Retail Prices and Consumer Surplus

- Retail price of small firms affected by:
- Waterbed effect: Up.
- Increased competition (strategic complements): Down.
- Formally:

$$
\frac{d p_{S}}{d w_{L}}=\frac{\partial p_{S}}{\partial w_{L}}+\frac{\partial p_{S}}{\partial w_{S}} \frac{\partial w_{S}}{\partial w_{L}}
$$

- Result: If the large buyer's discount is relatively small, i.e., if F is small, then all retail prices go down.
- First, "strategic complement" effect independent of F.
- Second, waterbed effect goes to zero for low F.


## Results for the Hotelling Model

- Result 1: The waterbed effect dominates if

$$
y_{S}<\frac{1}{3 t}\left(w_{S}-k\right)
$$

- Here:
- $y_{S}$ is the market share of a small firm.
- This is thus more likely to hold if $F$ is large, i.e., if the price differential is already large.


## Results (cont.)

- Consumer surplus: Marginal change w.r.t. discount $w_{L}$ equal to marginal change in average price.
- Result: Consumer surplus down if large buyer gets additional discount (implied by further growth) whenever

$$
2 y_{S} \frac{2-y_{S}}{1+y_{S}}<\frac{1}{3 t}\left(y_{S}-k\right)
$$

- While stricter than previous condition, again more likely if small buyers already more "squeezed".


## Extensions

- "Organic Growth"
- The waterbed effect arises as well if:
$\rightarrow$ Each buyer only controls one firm.
$\rightarrow$ But size differences are due to different own marginal costs.
$\rightarrow$ Growth = Increase in efficiency.
- Only difference: Welfare analysis.
- Endogenous acquisition (Hotelling)
- Larger buyers have a higher willingness to acquire additional firms.
$\rightarrow$ Can lever larger discount into new market.
$\rightarrow$ Further input price differential dampens competition. (In contrast, to case where firms become more symmetric.)


## Summary

- Results:
- Formal foundation for the waterbed, even with constant upstream market structure.
- Potential for consumer harm, even without downstream exit.
- Waterbed effect stronger and consumer harm more likely if smaller firms are already substantially disadvantaged.
- Caveats and next steps:
- Reconsider "full" bargaining case.
- Alternative models/sources of buyer power.


## Merci!

## copies available at:

 www.imperial.ac.uk/people/t.valletti