Bargaining, power and the net neutrality problem

Claudia Saavedra

Ecole Polytechnique

February 2, 2009

Claudia Saavedra (Ecole Polytechnique)

Bargaining in net neutrality

February 2, 2009 1 / 20

Net neutrality, investments and must-have content

- "They [VoIP, Google, Yahoo] would like to use my pipe for free, but I ain't going to let them do that because we have spent this capital and have to have a return on it" Ed Whitacre, Former Chairman of AT&T, 2005
- "Google Wants Its Own Fast Track on the Web" The Wall Street Journal, December 2008
- "Network neutrality is a policy avenue the company is no longer pursuing" *Microsoft statement*
- Other partnerships: Amazon-Sprint (dedicated connection reading device), Yahoo-AT&T (digital subscriber partnership), ESPN-Verizon (exclusive content)

(日) (周) (三) (三)

Net neutrality, investments and must-have content

- "They [VoIP, Google, Yahoo] would like to use my pipe for free, but I ain't going to let them do that because we have spent this capital and have to have a return on it" Ed Whitacre, Former Chairman of AT&T, 2005
- "Google Wants Its Own Fast Track on the Web" The Wall Street Journal, December 2008
- "Network neutrality is a policy avenue the company is no longer pursuing" *Microsoft statement*
- Other partnerships: Amazon-Sprint (dedicated connection reading device), Yahoo-AT&T (digital subscriber partnership), ESPN-Verizon (exclusive content)

くほと くほと くほと

Our purpose

What is the effect of a net neutrality regulation on welfare?

We study two possible regimes,

- one where access providers invest in quality
- a second, where a content provider can participate in the investment process by negotiating quality contracts with access providers

We want to determine

- the effects of the bargaining power of the content provider on the overall quality outcome
- the effects of the level of competition between access providers

Our results

Allowing contractual relations between content and access providers yield higher investments, increasing overall quality.

However <u>competition</u> in the access market and the possibility of further <u>degrading content quality</u> in the last-mile creates incentives for content exclusivity, **harming consumer welfare**.

Our results

Allowing contractual relations between content and access providers yield higher investments, increasing overall quality.

However <u>competition</u> in the access market and the possibility of further <u>degrading</u> content <u>quality</u> in the last-mile creates incentives for content exclusivity, **harming consumer welfare**.

Our results

Allowing contractual relations between content and access providers yield higher investments, increasing overall quality.

However <u>competition</u> in the access market and the possibility of further <u>degrading content quality</u> in the last-mile creates incentives for content exclusivity, **harming consumer welfare**.

Outline

Introduction

2 The Model

Benchmark: Net neutrality

3 No regulation

- Bilateral agreements
- Exclusive agreements

4 Consequences for Competition policy

5 Extensions

6 Discussion

- One content provider *C* offers free Internet content, remunerated by advertising, increasing with consumption.
- Two Internet access providers, A_1 and A_2 provide access to C.
- Demand from quadratic utility function

$$d_i = \frac{\alpha_i - p_i - \gamma(\alpha_j - p_j)}{1 - \gamma^2}$$

 $\gamma \in (0, 1)$ substitutability between access providers $\alpha_i > 0$ quality of content C perceived by consumers p_i access prices to consumers

• Costs for access providers depend on the quality level only, other costs are normalized to 0.

・何・ ・ ヨ・ ・ ヨ・

- One content provider *C* offers free Internet content, remunerated by advertising, increasing with consumption.
- Two Internet access providers, A_1 and A_2 provide access to C.

• Demand from quadratic utility function

$$d_i = \frac{\alpha_i - p_i - \gamma(\alpha_j - p_j)}{1 - \gamma^2}$$

 $\gamma \in (0, 1)$ substitutability between access providers $\alpha_i > 0$ quality of content C perceived by consumers p_i access prices to consumers

• Costs for access providers depend on the quality level only, other costs are normalized to 0.

・ 同 ト ・ ヨ ト ・ ヨ ト

- One content provider *C* offers free Internet content, remunerated by advertising, increasing with consumption.
- Two Internet access providers, A_1 and A_2 provide access to C.
- Demand from quadratic utility function

$$d_i = \frac{\alpha_i - p_i - \gamma(\alpha_j - p_j)}{1 - \gamma^2}$$

 $\gamma \in (0,1)$ substitutability between access providers $\alpha_i > 0$ quality of content C perceived by consumers

p_i access prices to consumers

• Costs for access providers depend on the quality level only, other costs are normalized to 0.

4 AR & 4 E & 4 E &

- One content provider *C* offers free Internet content, remunerated by advertising, increasing with consumption.
- Two Internet access providers, A_1 and A_2 provide access to C.
- Demand from quadratic utility function

$$d_i = \frac{\alpha_i - p_i - \gamma(\alpha_j - p_j)}{1 - \gamma^2}$$

 $\gamma \in (0,1)$ substitutability between access providers

 $\alpha_i > 0$ quality of content C perceived by consumers

p_i access prices to consumers

• Costs for access providers depend on the quality level only, other costs are normalized to 0.

4 AR & 4 E & 4 E &

Benchmark: Net neutrality

Timing

- A_i (i = 1, 2), set qualities α_i non-cooperatively.
- 2 A_i set prices p_i non-cooperatively.

Net neutrality

There exists threshold of competition $\hat{\gamma}_{nn} > 0$, such that for $\gamma < \hat{\gamma}_{nn}$ there exists a unique Nash equilibrium such that both access providers offer the same quality α^{nn} .

No regulation

Timing

• C proposes a quality increase :

bilateral contract to both access providers A_i , i = 1, 2exclusive contract to only one access provider no agreement to none of them, access providers set quality as in NN

- Bargaining process occurs over {α_i, T_i} qualities and a fixed monetary transfer
 Negotiation over the contract terms: Nash equilibrium of simultaneous generalized Nash bargaining problems
- **③** A_i set prices p_i non-cooperatively

Bilateral agreements

Bargaining framework

- *C* bargains with *A_i*, *A_j* simultaneously and separately, the contract terms of the bargaining pair are *not contingent* on the disagreement of a rival pair
- the outside option is the best-reply to the other pair's agreed quality

$$\{C, A_i\} \text{ negotiate the terms of } \{\alpha_i, T_i\}, \text{ take as given } \{\alpha_j^{bi}, T_j^{bi}\}$$

$$\max_{\alpha_i, T_i} \qquad \left\{ \Pi_C(\alpha_i, T_i; \alpha_j^{bi}, T_j^{bi}) - \Pi_C(\alpha^{\underline{bi}}, 0; \alpha_j^{bi}, T_i^{bi}) \right\}^{\beta}$$

$$\cdots \left\{ \Pi_A(\alpha_i, T_i; \alpha_j^{bi}, T_j^{bi}) - \Pi_A(\alpha^{\underline{bi}}, 0; \alpha_j^{bi}, T_i^{bi}) \right\}^{1-\beta}$$

outside option : $\alpha^{\underline{b}i} = \arg \max_{\alpha} \prod_{A} (\alpha, 0; \alpha_{j}^{\underline{b}i}, T_{j}^{\underline{b}i})$ $\beta \in [0, 1]$ C's bargaining power

Bilateral agreements (cont)

Contract setting

The bargaining pair (A_i, C) sets quality level α_i to maximize their joint profits.

The surplus is shared according to their respective bargaining power

Bilateral agreements (cont)

Bilateral quality

There exists threshold $\hat{\gamma}_{bi} > 0$, such that for $\gamma < \hat{\gamma}_{bi}$ there exists a unique symmetric equilibrium with bilateral contracts

$$\alpha^{bi} > \alpha^{nr}$$

Access providers are compensated for the investment ($T^{nn} > 0$) with advertising revenues.

The outside option $\alpha^{\underline{b}\underline{i}} \leq \alpha^{nn}$ it further decreases with competition (γ) .

Exclusive agreements

Bargaining framework

- C bargains with A_i for an exclusive quality α^E, A_i sets quality α^e non-cooperatively
- the outside option is the two access providers setting qualities without subsidy as in NN

 (C, A_i) negotiate the terms of $\{\alpha_i, T_i\}$, anticipating α_i^e

$$\alpha^{E} = \arg \max_{\alpha_{i}, T_{i}} \left\{ \Pi_{C}(\alpha_{i}, T_{i}; \alpha_{j}^{e}, 0) - \Pi_{C}(\alpha^{nn}, 0; \alpha^{nn}, 0) \right\}^{\beta}$$
$$\cdots \left\{ \Pi_{A}(\alpha_{i}, T_{i}; \alpha_{j}^{e}, 0) - \Pi_{A}(\alpha^{nn}, 0; \alpha^{nn}, 0) \right\}^{1-\beta}$$
$$\alpha^{e} = \arg \max \qquad \Pi_{A}(\alpha_{j}, 0; \alpha_{i}^{E}, T_{i}^{E})$$

 α_i

Exclusive agreements (cont)

Exclusive quality

There exists a threshold $\hat{\gamma}^e$, such that for $\gamma < \hat{\gamma}^e$ there exists a unique equilibrium with exclusive contracts

$$\alpha^{\mathbf{E}} \ge \alpha^{bi} > \alpha^{nn} \ge \alpha^{\underline{bi}} \ge \alpha^{\mathbf{e}}$$

beyond the threshold, A_i is excluded from the market.

Content provider's choice

Proposition

A weak content provider ($\beta \approx 0$) prefers an exclusive contract

The profits of a weak C depend only on his revenues

$$\Pi_{\mathcal{C}}^{\mathcal{E}} = \pi_{\mathcal{C}}(\alpha^{\mathcal{E}}, \alpha^{e}) - \left(\pi_{\mathcal{C}}(\alpha^{\mathcal{E}}, \alpha^{e}) - \pi_{\mathcal{C}}(\alpha^{nn}, \alpha^{nn})\right)$$

 $\alpha^{\underline{b}\underline{i}}$ decreases with competition and C 's profit gains

$$\Pi_{C}^{bi} = \pi_{C}(\alpha^{bi}, \alpha^{bi}) - 2\left(\pi_{C}(\alpha^{bi}, \alpha^{bi}) - \pi_{C}(\alpha^{bi}, \alpha^{bi})\right) \qquad \tau = \Delta C - \beta(\Delta A + \Delta C) \approx \Delta C$$

Content provider's choice (cont)

Proposition

A powerful content provider ($\beta \approx 1$) prefers bilateral contracts

The profits of a powerful C depend on A's gain

$$\Pi_{\mathcal{C}}^{\mathcal{E}} = \pi_{\mathcal{C}}(\alpha^{\mathcal{E}}, \alpha^{e}) + \left(\pi_{\mathcal{A}}(\alpha^{\mathcal{E}}, \alpha^{e}) - \pi_{\mathcal{A}}(\alpha^{nn}, \alpha^{nn})\right)$$

$$\Pi_{\mathcal{C}}^{bi} = \pi_{\mathcal{C}}(\alpha^{bi}, \alpha^{bi}) + 2\left(\pi_{\mathcal{A}}(\alpha^{bi}, \alpha^{bi}) - \pi_{\mathcal{A}}(\alpha^{bi}, \alpha^{bi})\right)$$

 $T = \Delta C - \beta (\Delta A + \Delta C) \approx -\Delta A$

E 5 4

47 ▶

February 2, 2009 15 / 20

Comparative statics

Consequences for Competition policy

- Social welfare is higher with global quality investments
- However exclusivity harms consumers and social welfare

Extension: Access providers offer contracts

Remark

To negotiate with C is a dominant strategy for A_i , however when C is powerful A_i face a prisoners dilemma situation.

$$\Pi^e_A < \Pi^{bi}_A < \Pi^{nn}_A < \Pi^E_A$$

Inverse timing

- **(**) A_i decide to negotiate with C or to abstain
- O accepts or not to negotiate
- Bargaining process
- A_i set prices p_i non-cooperatively

 \Rightarrow Inverting the timing of the game where access providers take the initiative to negotiate with *C* does not change the results

- 3

くほと くほと くほと

Extension: More strict regulation

No quality "degradation"

If access providers are binded to set minimal quality levels $(\alpha^{\underline{bi}} \ge \alpha^e \ge \alpha^{nn})$, the content provider has incentives to enter into bilateral agreements

Discussion

We have analyze the effect of a net neutrality regulation on the overall quality an welfare.

- Allowing content providers to contract with access providers increases investment and the overall quality level.
- However, access providers can profit from their control in the last mile and further degrade the quality level, this encourages weak content providers to enter in exclusive relations.
- Exclusive content deals are harmful for consumers as well as for social welfare in this setting