

### Foreclosing Competition through Access Charges and Price Discrimination

Ángel L. López, IESE (SP-SP) Patrick Rey, Toulouse School of Economics

Producers and distributors: can regulation of retail help for better regulation of the Internet Paris, 2 February 2009

## Outline of presentation

Background and motivation

Framework

Asymmetric competition with on-net pricing

Impact of the termination charge

Policy implications

## **Background and motivation**

### Cooperation or competition?

- Interoperability requires cooperation
  - standards, protocols (QoS)
  - interconnection agreements
- ... between competitors
  - "cooperation" may prevail over "competition"
  - lack of cooperation from incumbents may hurt new entrants
- $\rightarrow$  analyze impact of interconnection prices on retail competition

# **Background and motivation**

### Termination charge and entry

- Supply side: scale economies
  - Smaller operators face higher long-run incremental costs
  - European regulators have relied on this argument to justify the adoption of asymmetric termination rates
- Demand side: network effects (*this paper*)
  - Termination-based price discrimination (on-net pricing) generates club effects
  - If the access charge is above cost
    - $\rightarrow$  lower prices for on-net calls
    - $\rightarrow$  customers favour larger networks

# Background and motivation

#### European regulators have also relied on this demand-side argument to call for asymmetric termination charges

- French regulator (ARCEP) stressed in an Oct. 07 decision the presence of network effects due to the off-net/on-net tariff differentials that impede smaller networks' ability to compete effectively
- Spanish regulator (IMT) argued in a Sept. 2006 decision that network effects can place smaller networks at a disadvantage, and that higher access charges can increase the size of such network effects
- Common Position adopted on February 2008 by the European regulators (ERG): because of network effects, "an on-net/off-net retail price differential, together with significantly above-cost mobile termination rates, can, in certain circumstances, tone down competition to the benefit of larger networks"





### To study this concern, we study competition between two asymmetric networks in the presence of switching costs

- When switching costs are not 'too large', departing from costbased termination charges can help the incumbent maintain its monopoly position and increase its profit
- Qualified support for a cap on termination charge and/or a ban on on-net pricing



• On-net pricing and *customer inertia* favourable to the incumbent

- By insisting on the highest possible (reciprocal) access markup, incumbent can foreclose the market and exploit fully the resulting monopoly power
- A large termination subsidy could also yield the same outcome; however subsidies may be limited by feasibility constraints and arbitrage

#### • On-net pricing and *customer activism* favourable to the entrant

- While the incumbent may still try to prevent entry, too high an access charge would allow the entrant to overtake the incumbent
- The incumbent may then prefer to set an above- or below-cost access charge, and foreclosure strategies are profitable only when switching costs are sufficiently large
- In the absence of on-net pricing, foreclosure strategies are not profitable and moreover no longer feasible in a receiver pays regime

### Framework

#### Two asymmetric networks

- Incumbent /
- Entrant E

#### Demand side

- Customers initially attached to /
- Incur switching cost s if moving to E
- Substitutable services with Hotelling-type differentiation networks located at the two ends of segment, "transportation" cost t>0
- Full participation: u(0) >> t

### Framework

#### Supply side

• Total cost: 
$$c = c_o + c_t$$

- on-net cost: c
- off-net cost:  $c = c_o + a = c + m$ , where  $m = (a c_t)$





#### Competition

• Each network *i*=*I*,*E* offers a three-part tariff:

$$T_i(q,\hat{q}) = F_i + p_i q + \hat{p}_i \hat{q}$$

• Assuming a *balanced calling pattern*, net surplus is

$$w_i = \alpha_i v(p_i) + \alpha_j v(\hat{p}_i) - F_i$$

• where  $\alpha_i$  denotes the market share and  $v(p) \equiv \max_q u(q) - pq$ 

### **Preliminary analysis**

### Marginal cost pricing

• Network *i*'s profit is

$$\pi_i \equiv \alpha_i \, \mathbf{k}_i \, \mathbf{k}_i - c \, \mathbf{\hat{g}}(p_i) + \alpha_j (\hat{p}_i - c - m) q(\hat{p}_i) + F_i - f \, \underline{+} \, \alpha_j q(\hat{p}_j) \alpha_i m$$

• Optimizing w.r.t. usage prices, adjusting subscription fees to keep consumer surplus (and thus market shares) constant

$$\rightarrow \max \alpha_i [p_i - c q(p_i) + v(p_i)] + \alpha_j [(\hat{p}_i - c - m)q(\hat{p}_i) + v(\hat{p}_i)] - w_i - f$$

 $\rightarrow$  prices reflect "perceived" marginal cost:  $p_i = c$ ,  $\hat{p}_i = c_0 + a = c + m$ 

11

## **Preliminary analysis**

#### Coordination in consumer responses

• If consumers anticipate market shares  $\overline{\alpha}_I$ ,  $\overline{\alpha}_E = 1 - \overline{\alpha}_I$ , they expect a net surplus

$$w_i = \overline{\alpha}_i v(c) + \overline{\alpha}_j v(c+m) - F_i$$

• The actual consumer response is then

$$\hat{\alpha}_{i}(\bar{\alpha}_{i}) = \frac{1}{2} + \frac{1}{2t} \quad w_{i} - w_{j} + \delta_{i}s$$
$$= \frac{1}{2} + \frac{1}{2t} \quad F_{j} - F_{i} + \delta_{i}s \quad + \frac{1}{t} \left(\bar{\alpha}_{i} - \frac{1}{2}\right) \quad v(c) - v(c+m)$$

## Preliminary analysis

#### Possible outcomes

• Any fixed point  $\overline{\alpha}_i = \hat{\alpha}_i(\overline{\alpha}_i)$  that lies in (0,1) constitutes a consumer response where the networks share the market:

$$\alpha_I = 1 - \alpha_E = \frac{1}{2} + \frac{F_E - F_I + s}{2\tau(m)}$$

where  $\tau(m) \equiv t - (v(c) - v(c+m))$ 

- Similarly, there exists a continuation equilibrium where network *i* corners the market if  $\hat{\alpha}_i(1) \ge 1$  (or  $\hat{\alpha}_i(0) \le 0$ )
- Unique stable response if  $\tau(m)>0$ , otherwise two stable responses, where either network corners the market

## Retail price competition

### Termination markups and on-net pricing create problems

- Multiple consumer responses to given prices
  - Stable / unstable responses
  - Customer inertia / activism
- Strategic complementarity / substitutability (m<<0)
- Concavity issues
  - Determines nature of response / deviations
  - Generates cornered-market equilibria
- Multiple equilibria (weakly dominated strategies)
- → complete (painful?) characterization of all possible retail equilibria

### Possible equilibrium configurations



### Possible equilibrium configurations



16

### Possible equilibrium configurations



### Choice of the access charge: accommodation

#### Impact of the termination charge

- Suppose that, in a first stage, I can choose the (reciprocal) access charge: what would be its best choice?
- In the range of termination charges yielding a shared-market equilibrium, there exists a termination subsidy (*m<0*) that gives both networks greater profits than any non-negative termination markup
  - Generalizes Gans and King (2001) to the case of asymmetric networks: as long as the two networks share the market, price competition is softened when *m* decreases below zero
  - However, networks may actually favour more extreme termination markups to corner the market and charge higher prices

### Market foreclosure through high termination charges

• A large enough termination charge allows / to corner the market

- As long as consumers' response is unique, I's profit increases with m
- I can potentially earn in this way up to the monopoly profit
- Limitations
  - Network effects must be large enough:  $v(c) v(c+\infty) > t s/3$
  - In case of multiple consumer responses, *E* may corner the market
    - this happens when v(c) v(c+m) > t
    - with consumer activism, I's profit from foreclosure is then at most s
    - such foreclosure is not profitable when switching cost is moderate

#### Market foreclosure through termination subsidies

- I could also foreclose the market through large termination subsidies
- Limitations
  - Feasibility constraints:  $a \ge 0$  (i.e.,  $m \ge -c_t$ )
  - I's foreclosure profit *decreases* with subsidy as long as profits remain concave
    - need "larger" subsidies
    - no guarantee that concavity fails for large subsidies
  - For large enough subsidies and convex profits, *E*, too, may corner the market
    - unique consumer response, but multiple equilibria
    - avoiding this requires  $\tau(m) < s$ , limiting the size of the subsidy / profit
  - Subsidizing termination may generate abuses
  - Offering lower prices for off-net calls may not fit well with marketing strategies

### Illustration

• Linear demand function

$$u(q) = aq - \frac{b}{2}q^2 \longrightarrow q = (a-p)/b$$

- Calibration based on De Bijl and Peitz (2002, 2004)
  - a = 20 cents
  - b = 0.015 cent
  - $c_T = 0.5$  cent
  - $c = c_0 + c_T = 2$  cents
  - Feasible range for *m* is thus  $m \ge = a c_t = -0.5$  cent

#### Large switching costs: s = 70 €



27

#### Small switching costs: s = 5 €



23

## No termination-based price discrimination

#### Suppose that operators must charge same price for offnet and on-net calls

- A small departure from a cost-based termination charge decreases *I*'s profit (Carter-Wright 2003, Lopez 2007)
- A large enough termination charge allows *I* to corner the market

... but decreases profits

• Moreover, under the *Receiver Pays Regime*, neither operator can use the access charge to foreclose competition

p=c+m; r=-m: m has no impact on equilibrium profits



#### Qualified support for the concern expressed by entrants and regulators

 I can deter entry by insisting on a high termination charge (even if it is reciprocal)

#### However

- This is profitable only when the entrant is completely deterred from entering the market
- Such foreclosure is never profitable (and not even feasible in a receiver pays regime) in the absence of on-net pricing