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Abstract

We develop a model of dynamic platform formation under positive platform ex-

ternalities. Users can switch between an incumbent and entrant platforms, switching

opportunities arise stochastically and users can choose whether to accept or reject an

opportunity to switch. For homogeneous users, we characterize the incumbency ad-

vantage implied by a given equilibrium realization of the switching process. For linear

utility, incumbency advantage increases in the mean and dispersion of the incumbentÕs

share during the switching process, which captures the momentum and coordination of

the process. Heterogeneity in preferences may lead some users to delay their switching

or never switch at all. Assuming that switching opportunities arrive according to a

Poisson process, users switch to the entrant platform if the average preference favors

the entrant and if preferences are not too polarized.
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1 Introduction

The utility of moving into a city or joining a telecommunications platform depends

crucially on positive consumption externalities generated by other participants in that

same platform. A large body of economic theory (for instance,Farrell and Klemperer

[2007]) predicts that such markets feature large incumbency advantages since entrants

have an initial platform value of zero. This paper emphasizes a particular source of

incumbency advantage: the incentive of users to free ride on one another by delay

their time of switching until users have increased the entrantÕs platform value.

We assume that users receive opportunities to switch from an incumbent to an

entrant according to a stochastic process. For instance, when deciding whether to

move into a new city, users may need to wait for an available apartment. Users

can thenaccept or forego this opportunity, with foregoing users continuing to recieve

additional opportunities according to the same stochastic process. We allow for the

arrival of switching opportunity to vary with time and to depend on the number of

users who have already switched (for instance, due to a supply response to a large or

low demand by switching consumers).

If users are homogeneous, the ideal time to switch is when the platform value

of the entrant and the incumbent are equal, and an opportunity to switch is always

accepted after the point. Switching earlier than this point implies foregoing some of

the incumbentÕs platform value, but foregoing such an early opportunity to switch

might imply foregoing some of the entrantÕs platform values, if oneÕs next opportunity

to switch materializes after half the users have already switched. Thus, users have an

incentive to free-ride on one another by foregoing early switching opportunities, but

this is curbed by the threat of Þnding oneself in a low platform value incumbent for

a long period.

We associate incumbency advantage with the level of utility that the entrant must

provide in order for users to accept early switching opportunities. We then show that

incumbency advantage is closely related to the equilibrium path of the incumbentÕs

share, denotedh (t) at instant t. When utility is linear in the number of users in

oneÕs platform, incumbency advantage increases with the mean and dispersion of the

incumbentÕs share during the transition period. The meanE [h (t)] captures the mo-

mentum of the equilibrium switching process: it is large if switching is slow at Þrst

but speeds up over time. This increases incumbency advantage because users who
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forego early on have a high probability of switching alongside other users later, when

the process is occurring at a fast pace. The dispersionV [h (t)] captures the coordina-

tion of switching opportunities. The larger is this dispersion, the more frequently the

incumbentÕs share takes values close to1 and 0 in equilibrium, that is, the more does

the process allow for a large mass of users to switch in a short period of time. When

this is the case, users again foresee the opportunity of switching alongside a large

number of other users, and therefore tend to forego early switching opportunities.

We then allow for users to di!er in their preferences over the two platforms and as-

sume that switching opportunities arise according to a homogeneous Poisson process.

Users that prefer the incumbent may initially forego their switching opportunities

and accept them later when the entrantÕs platform value is large enough. An equilib-

rium where all users switch to the entrant can be sustained if the average preference

in the economy favors the entrant. However, the dispersion in preferences increases

incumbency advantage and, if preferences are su"ciently polarized, a split market

with two platforms may emerge in equilibrium. Indeed, decreasing the dispersion of

preferences reduces makes it easier to sustain an equilibrium where all users switch

to the entrant.

The rest of the paper is organized as follows. Section2 introduces the key ingre-

dients of our model and relates incumbency advantage to the equilibrium switching

process when users are homogeneous. Section3 considers the case of users with het-

erogeneous preferences between platforms. Section4 relates our model to the existing

literature, and Section5 concludes.

2 Homogeneous users Benchmark

2.1 Setup

We consider two platforms, an incumbent and an entrant, and a continuum of mass

1 of users. Time is continuous,t ! R+ . At t = 0, all users are participating in

the incumbent and entry can occur. There are positive consumption externalities: if

the mass of users in a platform isx " 0, instantaneous utility of all users isu (x)

in the incumbent, and u (x) + k in the entrant. We assumeu (x) : [0, 1] #$ [0, U] is

continuously di!erentiable, strictly increasing, strictly concave, andu (0) = 0 . The

parameterk ! R measures the additional utility obtained in the entrant and will be
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the measure of incumbency advantage. It can be understood, for instance, as the

di!erence in platform qualities. We assume the market is covered and that users

single-home (participate in only one platform).5

There is an exogenous technology according to which users receive opportunities

to switch from the incumbent to the entrant. We allow this technology to evolve

over time and to depend on the aggregate decisions of users. If the mass of users in

the incumbent platform at instant t is h (t), then the switching technology process

prescribes that a density%döh(t,h (t ))
dt " 0 of users, chosen randomly from among those

still in the incumbent, are given the opportunity to switch to the entrant at instant t.

Thus, if users always accept, the equilibrium path of the incumbentÕs share satisÞes

h (t) =
! t

0 %döh(t,h (t ))
dt dt ! [0, 1]. The earliest time at which all users have switched to

the entrant is T (t " T & h (t) = 0 ). If h (t) asymptotes towardsh (t) = 0 , we denote

T = ' .6

The switching technology can have multiple interpretations. Users may need to

wait for a physical vacancies in a city, or users may have limited attention and only

consider switching platforms with a frequency described by%döh(t,h (t ))
dt . In this case,

users may consider switching more or less frequently when the mass of users at the

entrant grows large.

5This is a reasonable assumption for platforms like neighborhoods, telecommunications platforms
and operating systems, but arguably less so in the case of social platforms. However, for those
platforms, oneÕs contribution to platform value and utility from participation depend on how much
time and attention one devotes to each platform, these being Þnite resources for each user. If re-
optimizing the allocation of oneÕs attention between platforms is costly, it may be a reasonable
approximation that users focus largely on the platforms where they expect to obtain the highest
utility. In practice, it seems that few people split their time approximately evenly between multiple
online social platform, unless they serve markedly di!erent purposes (for instance, a dating website
and a professional platform).

6In this case, we assume
! !

0 h (t) dt converges.
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Figure 1: A typical equilibrium switching processh (t).

Users discount the future at rater . Then, in a candidate equilibrium where the

mass in the incumbent evolves according toh (t), the utility of a user that switches

at time t = t! is

" t !

0
u (h (t)) e! rt dt +

" "

t !
[u (1 %h (t)) + k] e! rt dt

Intuitively, users are less likely to switch platforms if they are impatient (r large),

since the utility lost during the transition between platforms is dearer relative to the

the eventual beneÞt of coordinating on the entrant platform.7 Therefore, impatience

mechanically increases incumbency advantage. For this reason, we will focus on the

limit as r $ 0, where users are perfectly patient. By doing so, we are focusing on

sources of incumbency advantage other than this mechanical e!ect.

The action set of users faced with a switching opportunity is{ 0, 1} , where 1

indicates accepting and0 indicates foregoing the opportunity. We use the following

deÞnitions.

DeÞnition 1. A switching equilibrium is a Sub-Game Perfect Nash equilibrium

where, for every user, there is an instantt! such that an opportunity to switch is

accepted for allt " t ! .

DeÞnition 2. For a given a candidate switching equilibrium where mass in the in-

cumbent evolves according toh (t), k! is the minimum value ofk for which there is

7This is illustrated in Example 4.
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no proÞtable deviation.

Notice that, if k > u (1), switching is a dominant strategy for every user. By the

same logic, ifk < %u (1), it is a dominant strategy never to switch. We therefore

focus on the more interesting case where%u (1) ( k ( u (1).

We further assume that the decision to switch to the entrant is a weakly increasing

function of the number of users who have previously switched,1 % h (t). This is

especially reasonable in a setting where users are atomistic, there are no coordination

mechanisms and users can only switch platforms when given the opportunity to do

so. This is formalized as follows.

Assumption 1. User strategies are a functions (1 %h (t)) : [0, 1] #$ {0, 1} such that

x " #x ) s (x) " s (#x).

Since users are homogeneous and strategies are monotonic inh (t), it is the users

who are given the opportunity of switching att = 0 that have the highest incentive

to deviate.

Lemma 1. User strategies are indicators functions (* S : s (1 %h (t)) = 1 & 1 %

h (t) " S). Moreover, for a candidate equilibrium where the mass in the incumbent

evolves according toh (t), there is no proÞtable deviation if and only if users accept

to switch at t = 0.

Proof. With a binary action space, an increasing functions (1 %h (t)) must imply

that there exists someS such that 1 %h (t) < S ) s (1 %h (t)) = 0 and 1 %h (t) "

S ) s (1 %h (t)) = 1 . We normalizes (S) = 1 without loss of generality.

An equilibrium exists if and only if there are no proÞtable deviations by users. By

Assumption1, incentives to switch att decrease inh (t). By symmetry between users,

the incentive to deviate is highest when no users have switched yet, so if there is no

proÞtable deviation at t = 0, there is also none fort > 0. By the one-shot deviation

principle (Blackwell [1965]), we can consider a candidate switching equilibrium where

each user takes an opportunity to switch when it is presented, and consider the

incentive of a user to deviate att = 0 but follow the candidate equilibrium path for

t > 0.
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2.2 Results

We are now ready to discuss how the equilibrium switching processh (t) a!ects in-

cumbency advantage.

Proposition 1. DeÞne! ( h (t)) + u (h (t)) %u (1 %h (t)) . In the limit as r $ 0, the

switching process1%h (t) is a switching equilibrium if and only ifk "
! !

0 h(t )!( h(t )) dt! !
0 h(t )dt .

If T < ' , this can be expressed ask " E [! ( h (t))] + Cov[!( h(t )) ,h(t )]
E[h(t )] .

Proof. By Lemma 1, we need only consider the incentives of a user given the oppor-

tunity to switch at t = 0. Switching at t = 0 yields
! "

0 (u (1 %h (t)) + k) e! rt dt. A

user forgoing a switch att = 0 and switching when she is next given the chance (that

is, following the equilibrium path after the deviation at t = 0), Þnds herself in the

incumbent platform with probability h (t), and therefore obtains

" "

0
{ h (t) u (h (t)) + (1 %h (t)) ( u (1 %h (t)) + k)} e! rt dt.

This deviation is not proÞtable when the Þrst integral is weakly greater than the

second. Lettingr = 0, this condition becomes

k
" "

0
h (t) dt "

" "

0
h (t) [u (h (t)) %(u (1 %h (t)))] dt

The integrals converge in the limit whenr = 0 becauseu (x) and h (t) are both

bounded andh (t) $ 0, by the assumption that
! "

0 h (t) dt converges (h (t) has Òthin

tailsÓ). This then becomes

k " lim
T #"

TE [h (t) ! ( h (t))]
TE [h (t)]

=
E [h (t) ! ( h (t))]

E [h (t)]

Using the identity E [XY ] = E [X ] E [Y] + Cov [X, Y ] yields the result.

The term ! ( h (t)) measures how much, on average, utility in the incumbent plat-

form is greater than utility in the new platform. This is the expected beneÞt from

switching at a random instant t. Then, d!
dt = u$(h (t)) h$(t) + u$(1 %h (t)) h$(t) < 0.

Moreover, we have
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! ( h (t)) =

$
%%%&

%%%'

u (1) , h = 1 & t = 0

0 , h (t) = 1
2

%u (1) , h = 0 & t = T

Then, if the processh (t) is linear, ! ( h (t)) will be symmetric about the point

h (t) = 1
2 & t = T

2 , and E [! ( h (t))] = 0 . However, if h (t) is strictly concave, users

switch rapidly in the latter half of the process so, on average over time, utility is

higher in the incumbent: ! ( h (t)) = 0 & t > T
2 and E [! ( h (t))] > 0. Conversely, if

h (t) is convex,! ( h (t)) = 0 & t < T
2 and E [! ( h (t))] < 0.

The term Cov [! ( h (t)) , h (t)] captures the extent to which this surplus from

switching is likely to occur at a time when when the user Þnds herself in the in-

cumbent and is therefore likely to actually beneÞt from the surplus. Notice that

! ( h (t)) is increasing inh (t), so Cov [! ( h (t)) , h (t)] > 0. Intuitively, the advan-

tage of switching to the entrant (k) must exceed the beneÞt of participating in the

incumbent.

While intuitive, Proposition 1 is hard to interpret because a general functionu (x)

has a changing level of marginal utility for platform values, which complicates the

tradeo! faced by users through time. In the following corollary, we consider the case of

a linear utility function, where marginal utility for consumption externalities is Þxed,

which allows us to isolate the two key forces determining incumbency advantage.

Corollary 1. If u (x) = vx, then tipping occurs whenk+ v
2v "

! !
0 (h(t )) 2dt! !

0 h(t )dt . If T < ' ,

this condition is equivalent tok+ v
2v " E [h (t)]

(
1 + V[h(t )]

E[h(t )]2

)
.

Proof. Following the proof of Proposition1, a user is willing to accept the opportunity

to switch at t = 0 if and only if

0 "
" !

0
h (t) { vh (t) %v (1 %h (t)) %k} dt =

" !

0
h (t) 2vh (t) dt %(k + v)

" !

0
h (t) dt

which yields the Þrst inequality. The second equality can be obtained from Proposi-

tion 1 by using E (! ( h (t))) = 2 vE [h (t)] %v and Cov [! ( h (t)) , h (t)] = 2 vV [h (t)].

Notice that, if k+ v
2v > 1 & k > v , it is a dominant strategy for any user to switch

independently of the switching technology of the behavior of other users. Similarly,
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if k+ v
2v < 0 & k < %v, then being alone in the incumbent is a dominant strategy.

Notice also that 1 + V[h(t )]
E[h(t )]2 is a dimensionless factor multiplyingE [h (t)], which is in

units of time.

The term E [h (t)] captures the momentum of the equilibrium switching process.

SupposeT < ' and consider a switching process where consumers switch slowly at

Þrst but increasingly fast as time goes on (that is, there is positive momentum). For

instance, this can occur if the entrant does not build capacity until some users have

already switched. Then, mass in the incumbent decreases slowly at Þrst but eventually

speeds up,h (t) concave,E [h (t)] is large and incumbency advantage is large. This

because there is a large probability that a user who foregoes a switching opportunity

is given another opportunity to switch in a coordinated way with several other users

once momentum builds up. A similar reasoning explains why process that start o!

quickly but eventually slow down (that is, there is negative momentum), leads toh (t)

convex,E [h (t)] small and small incumbency advantage. The termE [h (t)] can also

be thought of as capturing whether, on average, switching opportunities occur early

or late in the switching process.

The term V[h(t )]
E[h(t )]2 captures, for a average timing of switching opportunities, how

coordinated these opportunities. Intuitively, the larger isV [h (t)], the more often

h (t) takes values close to its extreme,0 and 1. If this is the case, thenh (t) must

transition from 1 to 0 in a relatively short period of time, which implies that a large

mass of users switch in a coordinated way. Clearly, if users foresee a large probability

of a coordinated switch, they will have a greater incentive to accept early switching

opportunities.

The following examples help clarify the role ofV [h (t)] and E [h (t)].

Example 1. For any linear process1%h (t) = at, we haveT = 1/a . Then E [h (t)] =

E [at] = 1
a

! 1/a
0 atdt = 1

2. Since the process is linear, there is no positive or negative

momentum, soE [h (t)] takes its intermediate value1
2. This is independent ofa, the

speed of switching. Moreover,V [h (t)] = V [at] = 1
a

! 1/a
0

*
at % 1

2

+2
dt = 1

12. Thus,

both mean and variance are constant for a linear switching process. We can then use

Corollary 1 to show that a linear switching process is a switching equilibrium only if

k " v
3.

Example 2. Consider the process whereT = 1 and h (t) =

$
&

'
1 %at , 0 < t < 1

2

a (1 %t) , 1
2 ( t < 1

,
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for a ! (0, 1). We have E [h (t)] = 1
2 for all values of a. Moreover, we have

V [h (t)] = 3+ a(a! 3)
12 increasing in a. Here, a increases the amount of perfectly co-

ordinated switching at t = 1
2 and thus increases incumbency advantage.

The following proposition shows that incumbency advantage can be positive as

well as negative, that is, there can be excessive entry.

Proposition 2. Consider the equilibrium switching processh (t) = 1 % ta . Then we

havelima# 0 k! = %1 and lima#" k! = 1.

Proof. We have T = 1. Then E [h (t)] = 1 % E [ta ] = 1 %
�1

0 tadt = a
1+ a , and

V [h (t)] =
�1

0

*
1 % ta % a

1+ a

+2
dt = a2

(1+ a)2(1+2 a) . As a $ ’ , all users switch att = 1,

lima#" E [h (t)] = 1 and lima# 0 V [h (t)] = 0 . As a $ 0, all users switch att = 0,

lima# 0 E [h (t)] = 0 and lima#" V [h (t)] = 0 .

This proposition emphasizes that the equilibrium switching process can distort

user behavior in two directions. On the one hand, when there is strong positive mo-

mentum, the incentive to forego early switching opportunities becomes overwhelming.

On the other hand, when there is an opportunity for a coordinated switch early on

and there is a credible threat that foregoing a switch is likely to imply Þnding oneself

in the incumbent when the switching process has becomes very slow, users may accept

switching even when the entrant platform is socially less e"cient than the incumbent.

There can thus be switching equilibria where consumers coordinate on an ine"cient

entrant. The later could occur, for instance, when a platform credibly commits to a

limited capacity.

We now present some examples of technologies that could motivate potential equi-

librium switching processes and show how these illustrate the results above. All

examples assume utility is linear andr = 0 (unless otherwise speciÞed).

Example 3. Suppose that the rate of switching increases with the number of users

who have already switched. For instance, let1%h (t) = m (t) and dm (t)
dt = am (t)+ bfor

a > 0, b > 0 and m (0) = 0 . This yields m (t) = b
a (%1 + eat ) and T = 1

a ln
* Ma

b + 1
+
.

DeÞning x + b
a , switching requiresk! = v

1+(2 x +1) (1! (x +1) ln ( x +1
x ))

1! (x +1) ln ( x +1
x ) . LÕHopitalÕs rule

then yields limx #" k! = 1
3 (as in Example1) and limx # 0 = 1. Therefore incumbent

advantage decreases in the baseline switching rateb and increases in the momentum

parametera, in accordance with the logic of Corollary1.
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Example 4. Suppose switching opportunities arrive following a Poisson process with

intensity s. Then h (t) = e! st and T = ' . With r = 0, switching occurs if k+ v
2v "

1
2 & k " 0. For r ,= 0, switching occurs ifk " k! = rv

2s+ r . Notice that incumbency

advantage increases with the discount rater and decreases with the arrival rates

because the latter gives the process Ònegative momentumÓ makingh (t) move concave:

it implies a large coordinated switch early on and then a long period of very slow

switching.

Example 5. Suppose that pairs of users meet with a Þxed probabilitya2 and that,

when two users from opposite platforms meet, this gives the user in the incumbent

an opportunity to switch to the entrant. If m (t) = 1 %h (t), the meeting probability

is am (t) (1 %m (t)) = dm(t)
dt . This di!erential equation, along with the boundary

condition m (0) = m0 solves to the Logistic equationm (t) = 1

1+
"

1
m 0

! 1
#

e" at
, and

T = ' . Tipping occurs whenk! v
2v " m0! 1

ln
"

1
m 0

# . The incumbent advantage is intuitively

decreasing in the initial mass in the entrant,m0. By LÕHopitalÕs Rule we obtain

limm0# 0 k! = v and limm0# 0 k! = %v.

3 A Model with Heterogeneous users

3.1 A Two-Type Model

We now consider the e!ect of user heterogeneity in endogenously determining the

switching process through user choices. In this case, incumbency advantage is no

longer determined by the incentives of users deciding att = 0. Some users may reject

switching entirely, or accept only after a su"cient mass of users has already switched.

We consider a setup similar to that of Section2. However, consumers havek = kH

in proportion p, and k = kL in proportion 1%p, with kL < k H . Instantaneous utility

in the entrant is v (1 %h (t)) + k, while in the incumbent isvh (t). We assume users

are given the opportunity to switch following a Poisson process with intensitys.8

The switching process will be endogenously determined by user choices. Types

kL choose the timet!
L at which they begin accepting opportunities to switch. For

8A Poisson process is a reasonable micro-foundation of the switching technology where users have
at each instant, an independent and constant probability of being given the opportunity to switch.
Moreover, a Poisson switching technology is a natural benchmark since the homogeneous users of
Section 2 switch when k " 0, that is, when the entrant platform is Pareto optimal.
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instance, t!
L = 0 if they accept all opportunities to switch andt!

L = ' if they never

accept. We assume that all typeskL agree ont!
L . Given t!

L , the mass in the incumbent

h (t) evolves according to

1 %h (t) =

$
&

'
1 %hH (t) = p(1 %e" st ) , 0 ( t ( t !

L

1 %hL (t) = p(1 %e" st ) + (1 %p)
*
1 %e" s( t " t !

L )
+

, t !
L ( t

.

We assume, for now, that typeskH Þnd it proÞtable to accept switching at any

t " 0. We can then obtain t!
L as the instant when a user of typekL is indi!erent

between switching and not, given that not switching will still imply that other types

kL will start switching at t = t!
L . We then obtain the following result.

Lemma 2. Types kL accept switching opportunities when the mass of users in the

entrant is at leastX L = %kL
v , and only switch if kL > %vp.

Proof. For t!
L ( t, a user of typekL Þnds herself in the incumbent platform with

probability PL = e! s(t ! t !
L ) and Þnds herself in the entrant with probability1 % PL .

Switching at time t = t!
L yields utility

! "
t !
L

[v (1 %h (t)) + kL ] dt. Foregoing a switch

at t = t!
L yields

! "
t !
L

[PL vhL (t) + (1 %PL ) [v (1 %hL (t)) + kL ]] dt. Indi!erence at t =

t!
L implies %1

s

*
kL + pv %e! st !

L pv
+

= 0 & kL
pv + 1 = e! st !

L . Plugging this into the

expression forh (t) , we Þnd that typeskL start switching when the mass in the new

platform is X L = p
(

1 %
(

kL
pv + 1

))
= %kL

v . Moreover, typeskL must be at least

willing to move in the limit when all types kL have moved (p > X L ), which implies

kL > %vp.

Intuitively, t !
L increases with the importance of platform externalities (v) and with

the proportion of typeskH because the rate at whichm (t) increases is proportional to

initial mass in a Poisson switching process, so a largerp increases the marginal beneÞt

of waiting. Types kL delay the time at which they start accepting opportunities to

switch if they have a preference for the incumbent (X L > 0 & kL < 0). If kL

preferences for the incumbent are su"ciently strong (kL < %vp), these types will

never switch. Finally, notice that typeskL start switching when their instantaneous

utility in the entrant platform becomes weakly positive: v
*
%kL

v

+
+ kL = 0.

We can now determine the incumbency advantage in this market: the level ofkH

such that, taking X L as given, typeskH choose to switch att = 0. We obtain the

following result.
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Lemma 3. If types kL switch eventually (kL > %vp), types kH switch at t = 0 if the

average preference in the economy favors the entrant (0 < pk H + kL (1 %p)). If types

kL never switch, typeskH switch at t = 0 if v(1 %p) ( kH .

Proof. SupposekL > %vp. If types kH switch at t = 0, they are in the incumbent

with probability PH = e! st . Switching at t = 0 yields
! "

0 PH [v (1 %h (t)) + kH ] dt.

Foregoing yields
! "

0 [PH v (h (t)) + (1 %PH ) (v (1 %h (t)) + kH )] dt. Indi!erence im-

plies 1
s

**
+ e! st !

L %1
+

(p %1)v %kL
+

= 0. Re-arranging and usingkL
pv + 1 = e! st !

L

yields the Þrst result.

If kL < %vp, following the same indi!erence argument described above, the en-

thusiastic types kH will switch at t = 0 knowing that types kL will not switch if
! "

0 PH [PH vhH (t) %v (1 %hH (t)) %kH ] dt < 0 , which yieldsv(1 %p) ( kH .

We can now characterize the set of possible switching equilibria.

Proposition 3. The possible equilibria of the game where consumers switch are:

1. If 0 < k L and 0 < k H , there exists a simultaneous switching equilibrium: both

types accept opportunities starting att = 0 and all users switch to the entrant.

2. If kL > %vp and 0 < pk H + kL (1 %p), there exists a staggered switching

equilibrium: types kH switch immediately while typeskL delay their switching,

but both types eventually switch to the entrant.

3. If kL < %vp and kH > v (1 %p), there exists a 2 platform equilibrium: then

typeskL do not switch but typeskH do, leading to two platforms in equilibrium.

4. Otherwise neither type switches.

Proof. The result follows from combining Lemmas2 and 3.

The Þgure below illustrates graphically the four kinds of equilibria that can arise in

this model.
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k L

kH-vp

v(1-p)

simultaneous2 platforms

staggered

no
switching

Figure 2: 3 possible types of switching equilibria forp = 1
2.

In sum, for all users to switch, two conditions are necessary. First, the entrant

must be preferred to the incumbent on average. Ifk L < 0, the most eager types have

to be su"ciently eager (kH large enough) to compensate this lack of enthusiasm and

they must be in a su"ciently high proportion ( p large enough). For instance, if types

are balanced (p = 1/ 2), we must have%k L < k H ; if p = 1, we must havekH > 0 as in

Example 4.

However, the enthusiasm ofkH types can only go so far. In a population of Þxed

size, there is a maximum value of platform externalities, and therefore a maximum

compensation that thek L types can receive from joining the entrant platform. The

second condition required for all users to switch is that typesk L cannot dislike the

entrant platform so strongly that the entire platform value of typeskH is too little to

compensate typesk L for the negative value ofk L . Thus, if preferences are su"ciently

polarized, even a large average preference for the entrant will result in a 2-platform

equilibrium.

3.2 The Domino E!ect

As we saw above, if preferences are su"ciently polarized, it is hard to sustain an

equilibrium where everyone switches to the entrant platform, even if average pref-

erences in the economy favor the entrant. We now extend the model to include a

mass of individuals with neutral preferenceskM = 0 who can act as a link between

users of typeskH and k L . These neutral types can then facilitate a ÒdominoÓ e!ect

14



that leads all users to switch even under conditions when that would not occur in the

environment of Sub-Section3.1.

We now consider three kinds of users, with typeskL < k M = 0 < k H . We

normalize the total population to1 and assume that typekM is in proportion q ! [0, 1],

while types kH and kL are both in proportion 1! q
2 . That is, q is a measure of how

concentrated preferences are. Otherwise the setup is as in Sub-Section3.1. Users

are given opportunities to switch following a Poisson process with intensitys. For

i ! { H, M, L } , each typeki chooses her preferred timet!
i at which to start accepting

opportunities to switch. In equilibrium, the number of people in the incumbent are

endogenously determined according to the process

1 %h (t)

$
%%%&

%%%'

1 %hH (t) = 1" q
2 (1 %e" st ) 0 ( t ( t !

M

1 %hM (t) = 1" q
2 (1 %e" st ) + q

*
1 %e" s( t " " M )

+
t !
M ( t ( t !

L

1 %hL (t) = 1" q
2 (1 %e" st ) + q

*
1 %e" s( t " " M )

+
+ 1" q

2

*
1 %e" s( t " " L )

+
t !
L ( t

1 2 3 4 5
t

0.2

0.4

0.6

0.8

1.0

h!t",m!t"

Figure 3: h (t) and m (t) for ! M = 1 and ! L = 2.

We adopt a same procedure as in the previous sub-section to obtain the following

intermediate results.

Lemma 4. Assuming typeskH and kM switch eventually, typeskL start accepting

opportunities to switch when the mass of users at the entrant isX L = %kL
v . Equiva-

lently, typeskL switch only if kL > %v1+ q
2 .

Proof. Assuming typeskH start switching at t = 0 and typeskM start switching at
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t !
M , we computet !

L . For t " t !
L , usersk L Þnd themselves in the incumbent platform

with probability PL = e! s(t! t!
L ) . Types k L start switching at a time t !

L at which

their are indi!erent about switching and foregoing an opportunity to switch, which

implies 0 =
! "

t!
L

PL { vhL %v (1 %h L ) %k L } dt, or
v+

"
2est !

M ! 1
#

qv

2kL + v+ qv = est !
L . The mass

in the entrant which users of typek L require to start to accept switching (X L ) is

X L = 1! q
2 (1 %e! st !

L ) + q
(

1 %e! s(t!
L ! t!

M )
)

= %kL
v . Types k L must be willing to move

at least in the limit when all the kH and kM types have moved, orX L < q + 1! q
2 &

k L > %v1+ q
2 .

This mirrors what was obtained in Sub-Section3.1. If types kM delay the time

at which they begin accepting to switch, typesk L also delay switching until their

instantaneous utility in the entrant platform becomes weakly positive (vX L + k L = 0).

As in Sub-Section3.1, the lower isk L , the more users must have switched beforek L

types start to accept switching. Ifk L < 0, as assumed, thenX L > 0 so typesk L do

not start switching immediately.

Importantly, increasing the concentration of preferences (q) relaxes the constraint

required for typesk L to be willing to switch at all (X L < q + 1! q
2 ). For q = 0, we

require k L > %v
2, but for q = 1 we only requirek L > %v. Intuitively, increasing q

increases the mass of types more enthusiastic than typesk L and thus increases the

value of platform externalities in the entrant for typesk L to enjoy. It is by increasing

the proportion of types kM more than it decreases that of typeskH that increasing

the concentration of types facilitates the domino e!ect that ultimately broadens the

range of parameter values for which switching is possible.9

Lemma 5. Assuming that typesk L switch eventually (k L > %v1+ q
2 ), types kM choose

! M such thatX M =
1!

-
1! 2X L (1! q)

2 . Moreover, typeskM switch only if typesk L switch.

Proof. Types kM take the choice ofX L as given from above and choose! M such that

they are indi!erent about starting to switch at t = t !
M . In the period ! M ( t, typeskM

Þnd themselves in the incumbent with probabilityPM = e! s(t! t!
M ) . Indi!erence at t =

t !
M implies 0 =

! t!
L

t!
M

PM [vhM %v (1 %hM ) %kM ] +
! "

t!
L

PM [vhL %v (1 %h L ) %kM ].

This implies e2st !
M = est !

L & t !
L = 2t !

M . Using this condition and the expression for

est !
L found above, we obtain a system of two equations and two unknowns. Solving the

9This constraint is similar to the one obtained in Sub-Section 3.1 (kL > %vp), because the
proportion of types ki > k L types wasp in that case and is 1+ q

2 here.
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system and choosing the positive solution yieldse2st !
M = est!

L =
qv+

-
v2! 2kL v(q! 1)

2kL + v+ qv .10

This implies that the mass required by typeskM before they accept to switch is

X M = 1! q
2 (1 %e! st !

M ) =
1!

-
1! 2X L (1! q)

2 whereX L = %kL
v as determined above.

When typeskL donÕt switch and typeskH switch at t = 0, types kM chooset!
M by

solving 0 =
! "

t !
M

PM { vhM %v (1 %hM ) %0} dt, which implies e! st !
M = 0 & t!

M = ' .

Intuitively, types kM are indi!erent about switching only for t!
M = ' becausekM = 0

and they obtain the same amount of platform externalities in either platform, but

utility is lost during the switching process which makes the incumbent preferable.

Notice that X M > 0 because the interior of the square root is less than unity.11

Importantly, X M is decreasing inq. For q = 1, X M = 0 so typeskM start switching

immediately as in the previous sub-section. However, asq decreases, the dispersion

of preferences increases and typeskM begin to delay the time at which they start

switching, soX M increases. It is becauseX M is decreasing inq that q also relaxes

the constraint on the kL for switch switching occurs.

Finally, we can determine the level ofkH required to start switching at t = 0,

assuming that the other types choose to start accepting switching opportunities even-

tually. The result mirrors that of Sub-Section3.1 and is formalized as follows.

Lemma 6. If t !
L < ' and t!

M < ' , types kH accept switching opportunities for all

t " 0 if kH " % kL . If types kM , kL do not switch, typeskH switch if kH > v
2 (q+ 1) .

Proof. If switching starts at t = 0, a user of typekH Þnds herself in the incum-

bent with probability PH = e! st . Then types kH are indi!erent at t = 0 if 0 =
! t !

M
0 PH 2vhH dt +

! t !
L

t !
M

PH 2vhM dt +
! "

t !
L

PH 2vhL dt % (v + kH )
! "

0 PH dt. This implies
1
2v

*
1 + q+ e! st !

L (q%1) %2e! st !
M q

+
= kH . Using the results above fort!

M and t!
L

yields the Þrst result.

If 0 >
! "

0 PH { vhH %v (1 %hH ) %kH } dt, types kH decide to switch even when

types kM , kL do not, which yieldskH > v
2 (q+ 1) .

The main result of this section can therefore be formalized as follows.
10If kL types switch (kL > %v 1+ q

2 ), we have v2 % 2kL v(q % 1) > 0 & % v
2

1
1" q < k L , because

1 + q < 1
1" q & q2 > 0. Moreover, 2kL + v + qv > 0 & kL > %v

2 (1 + q).
111 %2X L (1 %q) < 1 & 0 < X L & kL < 0
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Proposition 4. Full switching requireskH " % kL as well askL > %v1+ q
2 . Therefore,

increasing q increases the set of values of(kH , kL ) for which all users switch to the

entrant.

Proof. The result follows from Lemma4, with Lemmas 5 and 6 showing that an

increase inq does reduce the switching incentives of other users.

The following graph and examples illustrate the domino e!ect.

kL

kH
kH = %kL

-v

kL , kH

never
switch

-v/2

kL , kH

switch
if q large

kL , kH

switch
always

Figure 4: The Domino E!ect.

Therefore, it is still the case that the average preference in the population must be

favorable to the entrant platform. Thus, full switching requireskH " % kL . However,

it also requireskL > %v1+ q
2 . Thus, the concentration of the market does not a!ect

outcomes if the binding constraint iskH " % kL : the average preferences must still

favor of the entrant. However, decreasing the dispersion of types does relax the

constraint kL > %v1+ q
2 which can facilitate tipping if kH is large enough. That

is, conditional on the average preference being su"ciently in favor of the entrant,

increasing the concentration of preferences relaxes the constraints required for the

least enthusiastic types to be willing to switch and therefore makes markets easier to

tip.

Example 6. SupposekH = 2, kL = %1 and v = 3
2. Then clearly the average

preference in the economy will be in favor of the entrant platform. However, switching
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will only occur if %1 > %3
2

1+ q
2 & 1

3 < q. Therefore, for a concentrationq " 1
3 there

is tipping, whereas forq < 1
3 types kL and kM never switch.

4 Literature Review

Farrell and Saloner[1985] analyze an environment where a Þnite number of players

are given a single opportunity to switch following a pre-determined order. This gives

the Þrst player the ability to disproportionately a!ect the decisions of others by

committing to switch. In contrast, we consider a continuum of users, so an individual

userÕs decision has no direct impact on the decision of other users, so we abstract from

the ÒbandwagonÓ e!ects emphasized in that paper.Ochs and Park[2010] analyze an

environment where a Þnite number of players di!er in how large a platform must be

before it is proÞtable to join. Player types are privately known so there is aggregate

uncertainty about the composition of the pool of players. Players can join the platform

at any period and, in equilibrium, do so sequentially using threshold strategies. In this

setting, the source of frictions is the private information held by consumers, whereas

in our setting consumers have no private information.

In both papers mentioned above, a userÕs outside option is a Þxed level of utility,

whereas users in our model users choose whether to switch out of an existing platform

whose value decreases with time in a switching equilibrium. It is this feature of our

setup that that generates the friction in our model, the free riding incentives of users

to delay their switch decision, which is entirely from the papers mentioned above. As

in Farrell and Saloner[1985], adoption can also be ine"cient in our setting, but the

source of this ine"cient is not the ÒbandwagonÓ power of early movers.

Two other papers focus on issues similar to those we discuss.Sakovics and Steiner

[2012] study a model without private information where a monopoly platform chooses

the order in which to attract users and how much to subsidize each of them. User

outside options are heterogeneous but Þxed during the process of platform formation.

Our model abstracts from strategic considerations by Þrms and focuses on user de-

cisions. Moreover, we study circumstances where the order in which users join the

platform is potentially by the distribution of user heterogeneity, rather than chosen

directly by a proÞt maximizing platform. Cabral [2011] studies a model of competi-

tion between platforms that adjust their prices dynamically. In every period, a share

of users is can re-optimize their platform choice given the current prices and the mass
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of users in each platform. In contrast to this paper, we abstract from Þrm pricing

decisions. On the other hand, our focus on the technology of the switching process is

absent from that paper.

5 Conclusion

This paper studies the dynamic formation of competing platforms and the factors

determining incumbency advantage in platforms markets. We link incumbency ad-

vantage to the properties of the process according to which users switch platforms

in equilibrium, showing that the degree and timing of switching opportunities is

paramount in determining incumbency advantage. We then examine the role of user

heterogeneity and Þnd that switching occurs if the average user in the economy favors

the entrant platform and if preferences are su"ciently concentrated.

Our analysis abstract from strategic decisions by platforms. Whilek can be inter-

preted as a di!erence in prices or qualities between platforms, it is left as exogenously

determined and Þxed over time. Letting the Þrms determinek (for instance, prices)

would allow us to characterize how the switching technology interacts with Þrm strate-

gies. One could then determine to what extent an entrant might be willing to loose

revenue by lowering its price in order to incentivize switching.12 Along the same

lines, it would be interesting to determine the circumstances under which a entrant

might commit to a restricted capacity in order to increase the cost of foregoing early

switching opportunities and thereby reducing incumbency advantage.

Moreover, we have assumed a particular form of heterogeneity which implies a

speciÞc order in which users would join the platforms. In reality, users are likely to

di!er in more than one dimension. For instance, allowing for heterogeneity in both

v and k would enrich the model substantially. In this case, we conjecture that users

could still be ordered in the way they switch platforms in the following way: the Þrst

to switch would be users who prefer the entrant and have little value for externalities,

followed by users who are indi!erent between the platforms and have large values for

externalities, followed Þnally those who prefer the incumbent and do not have a large

value for platform externalities.

Our paper also abstracted from the e!ect of switching processes on welfare. In

particular, it would be interesting to compute the welfare lost during the transi-

12On this topic, seeWeyl [2010] and Cabral [2011].
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tion between platforms for di!erent switching processes and determine, for a given

switching process, how large doesk have to be for switching to be socially optimal.

Similarly, it would be interesting to determine the circumstances under which the 2

platform equilibria described in Section3 are socially optimal despite leading to a

lower amount of platform externalities.
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