

# La 5G: défis, fondamentaux et innovations

Marceau Coupechoux, Alain Sibille Télécom ParisTech



### **Plan**

- Les défis
- **■** Les fondamentaux
- Les innovations
- **■** Thèmes transversaux
- Conclusion





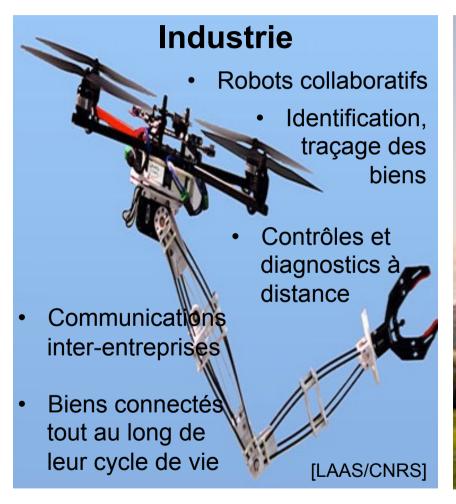
## Les défis





## La 5G, c'est quoi ? Quelques exemples...

## Multimedia Vidéos très haute qualité Expériences immersives et interactives Jeux en réseaux Direct/streaming/à la demande Productions collaboratives, réseaux sociaux Contenus mobiles et adaptatifs


#### Santé







## La 5G, c'est quoi ? Quelques exemples...





Et bien d'autres applications... que l'on ne connaît peut-être pas encore.





#### La classification du 3GPP

Applications très gros débits Vidéo haute qualité Services en diffusion Téléchargements, etc.

eMBB

Accès mobile large bande

Communications prioritaires
Contrôle à distance Jeux interactifs

Internet tactile

Automatisation industrielle

Contrôle industriel

Véhicules connectés eV2X
Véhicules autonomes Com.

Platooning véhiculaires

5G

Flexibilité et passage à l'échelle Network slicing Sécurité Connectivité multi-réseaux Politiques de priorité, QoS Mobilité

Mobilité Gestion des contenus, *caching* 

NEO Gestion du réseau MIOT
Accès
massif loT

CriC

Com.

critiques

Bio-connectivité

Home networking

Capteurs, compteurs

Appareils portatifs

Logistique

Agriculture





## Les défis technologiques

|      | Débit         | Latence       | Fiabilité                                    | Densité                                                   | Mobilité       | Locali-<br>sation | Objets contraints |
|------|---------------|---------------|----------------------------------------------|-----------------------------------------------------------|----------------|-------------------|-------------------|
| eMBB | +++<br>10Gbps |               |                                              | ++<br>10 Tbps/km <sup>2</sup><br>25k util/km <sup>2</sup> | +++<br>500km/h |                   |                   |
| CriC |               | +++<br>x 1 ms | +++<br>PER~10 <sup>-4</sup><br>Dispo>99,999% | ++<br>1k/km <sup>2</sup>                                  |                | +++<br>10 cm      |                   |
| MIOT |               |               |                                              | +++<br>1M/km <sup>2</sup>                                 |                | +++<br>0.5 m      | +++               |
| eV2X | +<br>10Mbps   | +++<br>x 1 ms |                                              | ++                                                        | +++<br>500km/h | +++<br>0.5 m      |                   |





## Les fondamentaux





8

## Fondamentaux des communications sans fil Shannon, capacité et ressource spectrale

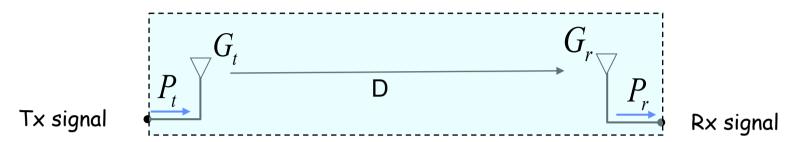
Back to basics : la formule de Shannon

Largeur de bande (Hz)
$$C = B \cdot \log_2 \left(1 + \frac{P_r}{P_{bruit}}\right) \quad \text{capacité en bits/s}$$

$$P_{r} = B \cdot DSP_{reçue} \qquad P_{bruit} = B \cdot k_{B}T \cdot N_{f}$$

$$C = B \cdot \log_{2} \left(1 + \frac{DSP_{reçue}}{k_{B}T \cdot N_{f}}\right)$$
 Efficacité spectrale Maximale

- Efficacité spectrale limitée par le SNR (logarithmique)
- → Avec N antennes de transmission et N de réception (MIMO NxN), la capacité est multipliée par N


Chaire IRSN





### Fondamentaux des communications sans fil

Grandeurs et servitudes de la propagation des ondes



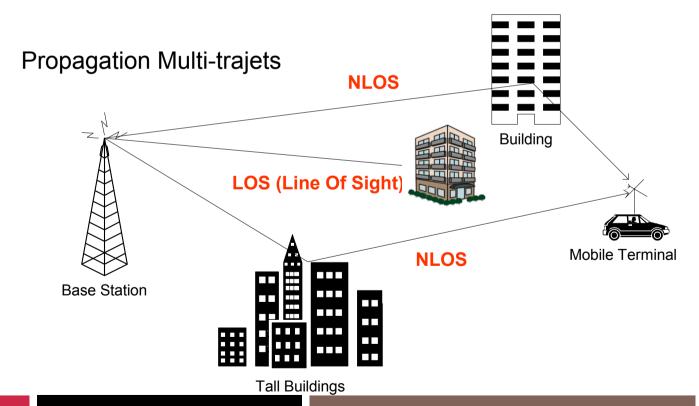
#### Equation des télécommunications

$$\frac{P_r}{P_t} = G_r \cdot G_t \cdot \left(\frac{c}{4\pi DF}\right)^2$$

Exemple: P<sub>t</sub>=100 mW, antennes gain unité, F=2.6 GHz, D=1 km

→ P<sub>r</sub>=8.4 pW=8.4e-9 mW

Avec  $P_{bruit}$ = 0.2 pW dans B=100 MHz pour  $N_f$ =5



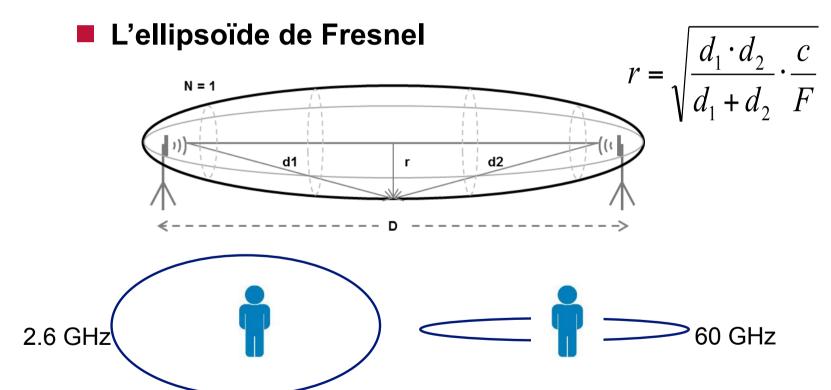



## Fondamentaux des communications sans fil

#### Grandeurs et servitudes de la propagation des ondes










### Fondamentaux des communications sans fil

Grandeurs et servitudes de la propagation des ondes

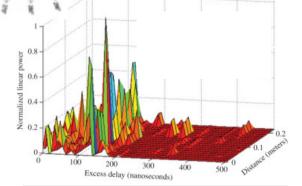








## Fondamentaux des communications sans fil Grandeurs et servitudes de la propagation des ondes


## Les problématiques majeures de la propagation radio

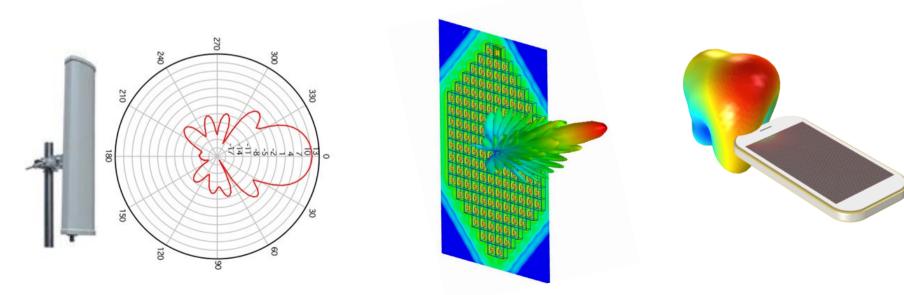
 L'atténuation qui varie comme D<sup>2</sup> jusque D<sup>6</sup> ou pire selon la nature des obstructions

L'augmentation de l'atténuation comme F<sup>2</sup>

 La dispersion des retards des multi-trajets qui aboutit à un mélange de signaux décalés dans le récepteur

L'effet Doppler, qui décale les fréquences reçues avec la vitesse du mobile









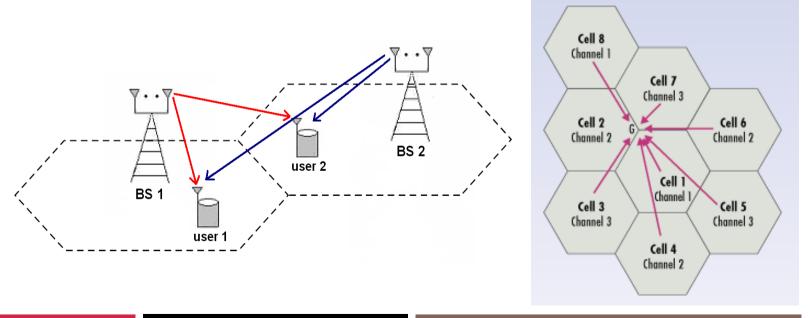

## Fondamentaux des communications sans fil Tout passe par les antennes

- Les deux antennes sont un point de passage obligé, favorable ou défavorable
  - Le gain peut être >1 ou <1</li>
  - Le gain traduit la directivité de l'antenne : une antenne est un filtre angulaire pour les ondes émises ou reçues










#### Divers types d'interférences

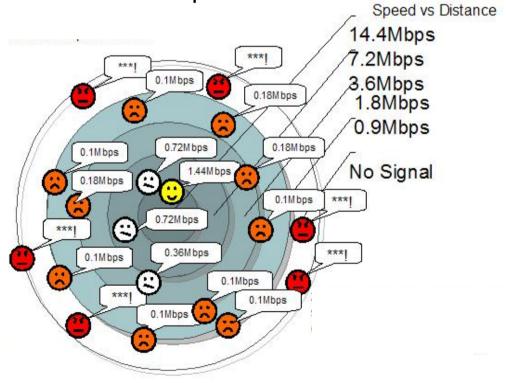
Downlink (vers mobile) vs. uplink (vers station de base)

Chaire IRSN

- Co-canal (dans la même bande) ou dans un canal adjacent
- → SINR (rapport signal à interférences+bruit)








15



#### ■ Le problème des bords de cellules

- Atténuation importante
- Interférences importantes



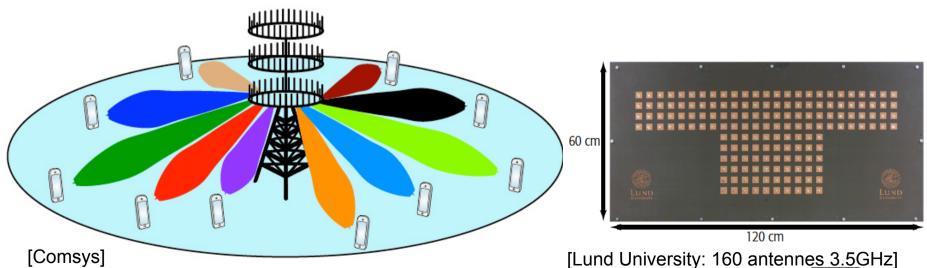




Institut Mines-Télécom

## Les innovations

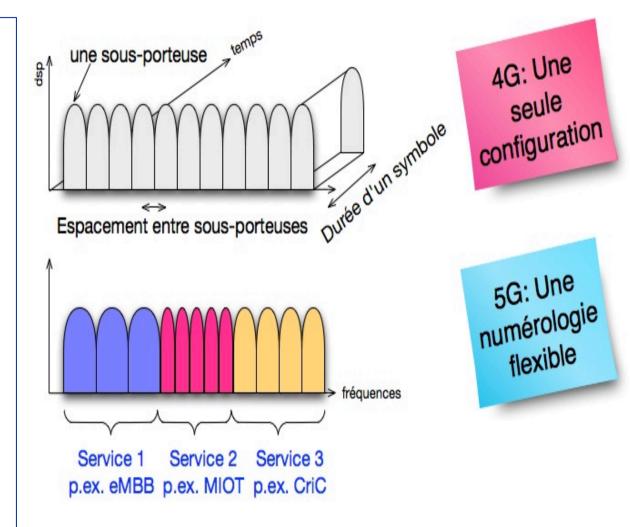





### Augmenter l'efficacité spectrale

#### **■ Massive MIMO**

- Principe: Utiliser >100 antennes pour servir >10 utilisateurs simultanément à la même fréquence
- + Efficacité spectrale
- + Efficacité énergétique
- + Low cost hardware

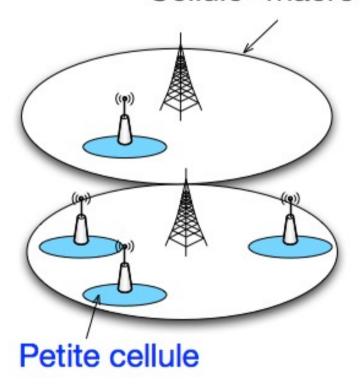

- Taille des panneaux d'antennes
- Complexité du traitement du signal
- Signalisation (estimation du canal)



## Augmenter l'efficacité spectrale

#### Nouvelles formes d'onde

- 1) Flexibilité: adapter la façon dont le signal est transmis en fonction des services.
- 2) Efficacité: n'utiliser que le spectre nécessaire en réduisant les ressources de garde.
- 3) Frugalité: faible complexité, faible consommation d'énergie.








#### Densifier le réseau

#### Cellule "macro"

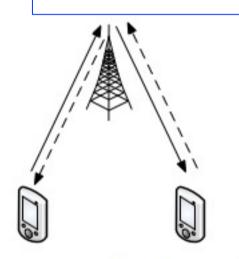


### HetNets: les réseaux hétérogènes

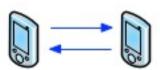
 De petites cellules complémentent les grandes cellules

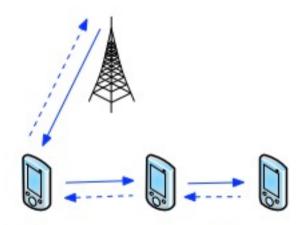
- + Accroît la capacité du réseau
- + Bonnes conditions de propagation notamment en intérieur
- + Offre de gros débits
- Interférences
- Déséquilibres de charge




[Technology Partnership]







#### Densifier le réseau

D2D: les communications de terminal à terminal







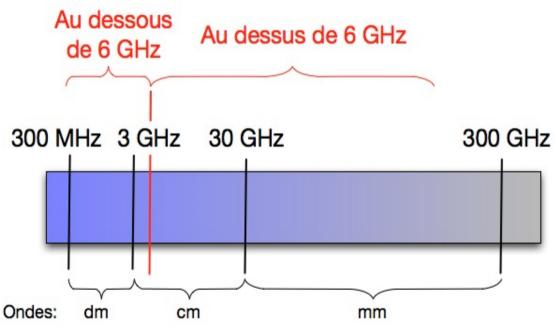


## Communication via Communication la station de base

D2D

Communication D2D multibonds

- + Accroît la capacité du réseau
- + Bonnes conditions radio
- + Offre de gros débits


- Interférences
- Gestion des ressources plus difficile
- Signalisation, synchronisation

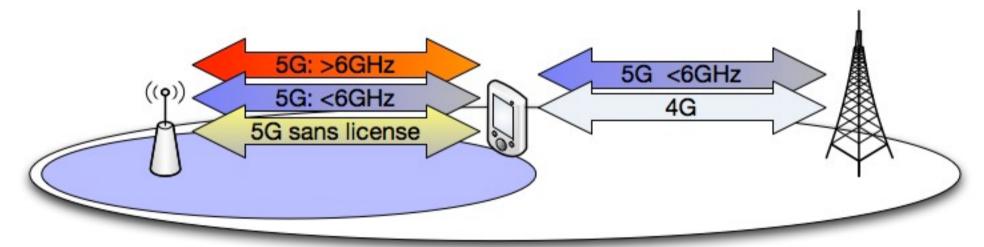




## Nouvelle frontière spectrale

mmWave: Utiliser des bandes au dessus de 6 GHz




- + ~20 GHz de bande disponible
- + Petites antennes (cf. mMIMO)
- + Peu d'interférence entre cellules
- + Backhaul et accès
- Conditions de propagation difficiles (forte atténuation, blocages, absorptions)
- Traitements bande de base et RF
- Modélisation et performances dans un contexte cellulaire ?





## Agréger les bandes et les technologies

- Agrégation de porteuses: Concaténer plusieurs fréquences
- Bandes non licenciés: Utiliser les bandes type WiFi
- Multi-connectivité: Communiquer avec plusieurs technologies

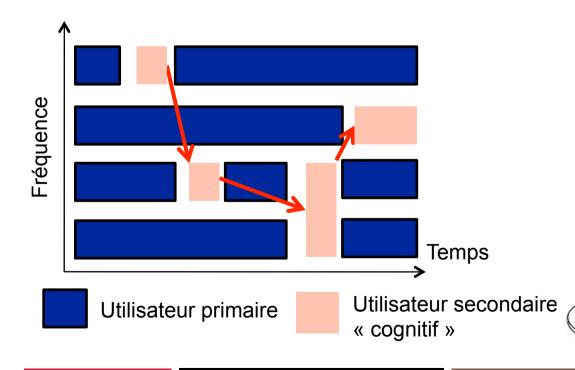


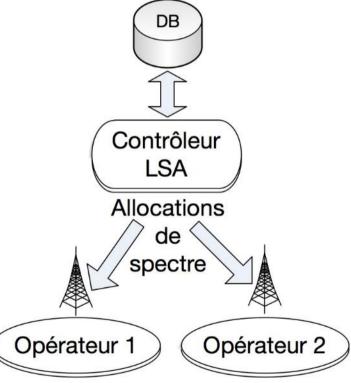
- + Gros débits même quand les conditions radio ne sont pas bonnes
- Aspects protocolaires plus complexes
- Chaînes radio plus complexes





23


### Nouvelles gestions du spectre


#### Radio cognitive

Profiter des « trous » de spectre pour communiquer de manière opportuniste

#### Accès partagé au spectre (LSA)

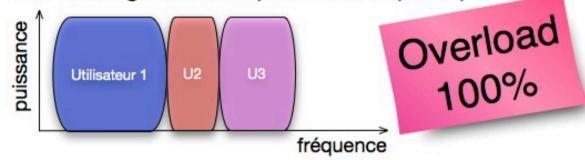
Usage du spectre fréquence, temps, espace



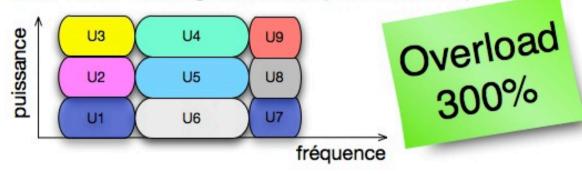







#### Accès massif

**NOMA:** plusieurs utilisateurs partagent la même ressource


+ Plus de connexions simultanées

- Collisions
- Problèmes de contrôle de puissance
- Récepteurs plus complexes

4G: Orthogonal Multiple Access (OMA)



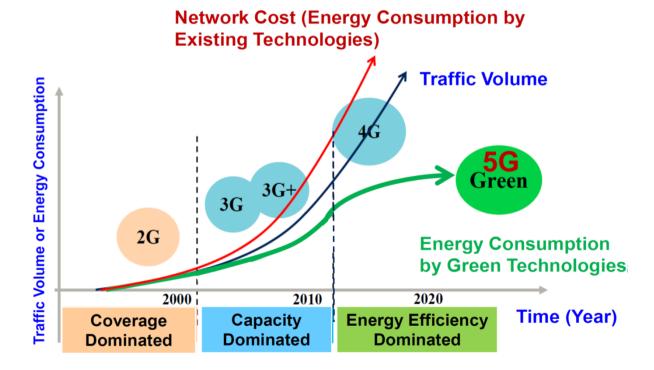
5G: Non-Orthogonal Multiple Access (NOMA)







Thèmes transversaux: énergie, sobriété, sécurité






#### Thèmes transversaux L'énergie

#### L'énergie est notre avenir !

Sciences et Avenir : « Les données mobiles seraient bien plus énergivores que les datacenters » (17/08/2017)







## Thèmes transversaux

#### La sobriété

#### Limiter l'ampleur des champs EM



loi relative à la sobriété, à la transparence, à l'information et à la concertation en matière d'exposition aux ondes électromagnétiques (2015)

Projet européen LEXNET « Low Exposure NETworks »



 Chaire Modélisation, Caractérisation et Maîtrise des expositions aux ondes électromagnétiques (C2M)







## Thèmes transversaux La sécurité



#### La sécurité des réseaux sans fil est multiforme

- Attaques passives (écoute) ou actives (ex. intrusions)
- protection de la signalisation, authentification
- protection du contenu des messages (cryptage)

#### Problématiques

- Disponibilité des signaux (air)
- Coût du cryptage (énergie, calcul)

#### Nouvelles solutions impliquant la couche physique

- Génération de clés à partir de l'aléa canal
- Codage secret



Connected Cars & Cyber Security





## Conclusion





#### Conclusion

#### Bien d'autres innovations permettent:

- Une grande fiabilité et de faibles latences (p.ex. tailles variables de slots)
- Une gestion du réseau flexible, décentralisée sécurisée (virtualisation, cloud-RAN, convergence fixe-mobile,...)
- Des communications V2X

#### Transition en douceur de la 4G à la 5G

 De nombreuses innovations sont déjà présentes en LTE-Advanced, LTE-Advanced Pro et NB-IoT.

#### Pensons déjà au delà!

 L'UPSay lance « Beyond 5G Initiative » avec Nokia, Orange, Thalès et Vedecom





31

#### Conclusion

#### Mais attention aux mirages !

- Limitations physiques et technologiques (millimétrique)
  - Atténuation variant comme F<sup>2</sup>
  - Directionnalité des ondes millimétriques et ombrages
  - Technologies coûteuses, mauvais rendement
- Petites cellules → déploiement massif pour assurer la couverture
- Haute disponibilité très exigeante
- Utilisation massive/applications critiques de la 5G → consolider la sécurité (à bon escient)





26/09/2017

32

## Merci pour votre attention!



